NICT_LOGO.JPG KYOTO-U_LOGO.JPG

WAT

The Workshop on Asian Translation
Evaluation Results

[EVALUATION RESULTS TOP] | [BLEU] | [RIBES] | [AMFM] | [HUMAN (WAT2020)] | [HUMAN (WAT2019)] | [HUMAN (WAT2018)] | [HUMAN (WAT2017)] | [HUMAN (WAT2016)] | [HUMAN (WAT2015)] | [HUMAN (WAT2014)] | [EVALUATION RESULTS USAGE POLICY]

BLEU


# Team Task Date/Time DataID BLEU
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1WTHINDENen-hi2020/09/03 23:14:363640------22.80---NMTYesMultilingual-ensembleX3
2WTHINDENen-hi2020/09/03 18:20:143639------22.08---NMTNoUsed 5M Back translation news crawl data to train. Method: Transformer NMT; Preprocessing: 1. Removed mixed language sentences 2. moses tokeniser for English and for Hindi indicnlp normaliser and toke
3cvitHINDENen-hi2018/09/18 22:37:372500------21.57- 0.00 0.00NMTYesAveraging Models from epochs 61-68. Base Transformer. Uses External Data.
4XMUNLPHINDENen-hi2017/07/28 23:38:291576------21.39 0.00 0.00 0.00NMTNoensemble of 4 nmt models + monolingual data
5cvitHINDENen-hi2018/09/18 21:58:212496------21.35- 0.00 0.00NMTYesTransformer Base. Uses External Data. Averaging of Checkpoints Enabled.
6cvitHINDENen-hi2018/09/18 15:21:132489------21.10- 0.00 0.00NMTYesTransformer Base. Uses External Data
7cvitHINDENen-hi2020/07/10 04:40:193436------20.69---NMTYesMultilingual model, uses pib-v2 data
8cvitHINDENen-hi2020/07/06 19:22:293428------20.52---NMTYesMultilingual Transformer model. Uses pib-v0 data.
9NICT-5HINDENen-hi2020/09/18 17:47:183935------20.48---NMTNoMBART Fine Tune on approx. 900k sentence pairs from whole HindEn dataset.
10cvitHINDENen-hi2019/05/27 16:03:362680------20.46- 0.00 0.00NMTYesmassive-multi + bt
11CUNIHINDENen-hi2018/09/15 01:12:402361------20.28- 0.00 0.00NMTNoTransformer big, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 1300k steps
12cvitHINDENen-hi2019/03/15 01:21:272642------20.17- 0.00 0.00NMTYesmassive-multi
13CUNIHINDENen-hi2018/09/15 01:22:032365------20.07- 0.00 0.00NMTNoTransformer big, transfer learning from EN-CS 1M steps, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 700k steps
14cvitHINDENen-hi2020/07/06 19:08:493427------19.83---NMTYesMultilingual Transformer model.
15XMUNLPHINDENen-hi2017/07/27 22:04:541508------19.79 0.00 0.00 0.00NMTNosingle nmt model + monolingual data
16CUNIHINDENen-hi2018/09/13 22:18:142320------19.78- 0.00 0.00NMTNoBig Transformer model with backtranslation, with transfer learning from English to Czech.
17cvitHINDENen-hi2018/09/09 21:12:292254------19.69- 0.00 0.00NMTYesConvS2S. Uses external data.
18NICT-5HINDENen-hi2021/03/18 23:06:494571------19.42---NMTYesFT on an mBART model. Beam size 8.
19NICT-5HINDENen-hi2021/03/17 22:51:474557------19.00---NMTNoEnHi nmt model trained using my own toolkit. Only the parallel corpus is used. No fine tuning no pretraining. beam 4 lp 1.0.
20cvitHINDENen-hi2018/09/07 12:29:042235------18.77- 0.00 0.00NMTYesConvS2S Model. External Data is used.
21ORGANIZERHINDENen-hi2016/07/26 10:07:481032------18.72 0.00 0.00 0.00OtherYesOnline A (2016)
22cvitHINDENen-hi2019/03/15 01:31:412644------18.31- 0.00 0.00NMTYesmassive-multi + ft
23CUNIHINDENen-hi2018/09/15 01:14:342362------17.63- 0.00 0.00NMTNoTransformer big, transfer learning from EN-CS 1M steps, followed by only backtranslation EN-HI for 300k steps, followed by original EN-HI for 500k steps, beam=8; alpha=0.8; averaging of last 8 models.
24ORGANIZERHINDENen-hi2016/07/26 13:24:221047------16.97 0.00 0.00 0.00OtherYesOnline B (2016)
25cvitHINDENen-hi2018/09/09 01:20:092251------16.77- 0.00 0.00NMTNoConvS2S Model. IIT-Bombay data filtered with langdetect. + Backtranslated Monolingual Data ppl in [0.05, 0.14]
26CUNIHINDENen-hi2018/09/15 01:19:042363------16.49- 0.00 0.00NMTNoTransformer big, transfer learning from EN-CS 1M steps, only original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 230k steps.
27CUNIHINDENen-hi2018/09/15 01:20:332364------14.20- 0.00 0.00NMTNoBaseline, transformer big only EN-HI, beam=8, alpha=0.8, averaging 8 steps after 330k steps
28ORGANIZERHINDENen-hi2018/11/13 14:54:582566------13.76- 0.00 0.00NMTNoNMT with Attention
29IITP-MTHINDENen-hi2016/08/18 23:13:251185------13.71 0.00 0.00 0.00SMTYesIITP-MT System1
30XMUNLPHINDENen-hi2017/07/20 23:07:381422------13.69 0.00 0.00 0.00NMTNosingle nmt model
31IITP-MTHINDENen-hi2016/08/29 18:51:441290------13.57 0.00 0.00 0.00SMTNoIITP-MT System2
32IITB-MTGHINDENen-hi2017/08/01 15:09:011725------12.23 0.00 0.00 0.00NMTNoNMT with ensemble (last 3 + best validation)
33EHRHINDENen-hi2016/08/17 14:30:081166------11.75 0.00 0.00 0.00SMTNoPBSMT with preordering (DL=6)
34ORGANIZERHINDENen-hi2016/08/20 17:41:361252------10.79 0.00 0.00 0.00SMTNoPhrase-based SMT
35IITB-MTGHINDENen-hi2017/09/05 23:04:581763------ 0.34 0.00 0.00 0.00NMTNo

Notice:

Back to top

RIBES


# Team Task Date/Time DataID RIBES
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1cvitHINDENen-hi2018/09/18 22:37:372500------0.773923-0.0000000.000000NMTYesAveraging Models from epochs 61-68. Base Transformer. Uses External Data.
2cvitHINDENen-hi2018/09/18 21:58:212496------0.773078-0.0000000.000000NMTYesTransformer Base. Uses External Data. Averaging of Checkpoints Enabled.
3cvitHINDENen-hi2018/09/18 15:21:132489------0.771549-0.0000000.000000NMTYesTransformer Base. Uses External Data
4WTHINDENen-hi2020/09/03 23:14:363640------0.769138---NMTYesMultilingual-ensembleX3
5cvitHINDENen-hi2020/07/06 19:22:293428------0.766753---NMTYesMultilingual Transformer model. Uses pib-v0 data.
6cvitHINDENen-hi2019/05/27 16:03:362680------0.765422-0.0000000.000000NMTYesmassive-multi + bt
7WTHINDENen-hi2020/09/03 18:20:143639------0.765340---NMTNoUsed 5M Back translation news crawl data to train. Method: Transformer NMT; Preprocessing: 1. Removed mixed language sentences 2. moses tokeniser for English and for Hindi indicnlp normaliser and toke
8cvitHINDENen-hi2020/07/10 04:40:193436------0.764496---NMTYesMultilingual model, uses pib-v2 data
9NICT-5HINDENen-hi2020/09/18 17:47:183935------0.763000---NMTNoMBART Fine Tune on approx. 900k sentence pairs from whole HindEn dataset.
10CUNIHINDENen-hi2018/09/15 01:22:032365------0.761582-0.0000000.000000NMTNoTransformer big, transfer learning from EN-CS 1M steps, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 700k steps
11CUNIHINDENen-hi2018/09/15 01:12:402361------0.761292-0.0000000.000000NMTNoTransformer big, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 1300k steps
12cvitHINDENen-hi2019/03/15 01:21:272642------0.761061-0.0000000.000000NMTYesmassive-multi
13cvitHINDENen-hi2020/07/06 19:08:493427------0.758405---NMTYesMultilingual Transformer model.
14cvitHINDENen-hi2018/09/09 21:12:292254------0.758365-0.0000000.000000NMTYesConvS2S. Uses external data.
15NICT-5HINDENen-hi2021/03/18 23:06:494571------0.757646---NMTYesFT on an mBART model. Beam size 8.
16CUNIHINDENen-hi2018/09/15 01:19:042363------0.754966-0.0000000.000000NMTNoTransformer big, transfer learning from EN-CS 1M steps, only original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 230k steps.
17CUNIHINDENen-hi2018/09/13 22:18:142320------0.754244-0.0000000.000000NMTNoBig Transformer model with backtranslation, with transfer learning from English to Czech.
18CUNIHINDENen-hi2018/09/15 01:14:342362------0.753895-0.0000000.000000NMTNoTransformer big, transfer learning from EN-CS 1M steps, followed by only backtranslation EN-HI for 300k steps, followed by original EN-HI for 500k steps, beam=8; alpha=0.8; averaging of last 8 models.
19NICT-5HINDENen-hi2021/03/17 22:51:474557------0.750840---NMTNoEnHi nmt model trained using my own toolkit. Only the parallel corpus is used. No fine tuning no pretraining. beam 4 lp 1.0.
20XMUNLPHINDENen-hi2017/07/28 23:38:291576------0.7496600.0000000.0000000.000000NMTNoensemble of 4 nmt models + monolingual data
21cvitHINDENen-hi2018/09/07 12:29:042235------0.748008-0.0000000.000000NMTYesConvS2S Model. External Data is used.
22XMUNLPHINDENen-hi2017/07/27 22:04:541508------0.7431290.0000000.0000000.000000NMTNosingle nmt model + monolingual data
23CUNIHINDENen-hi2018/09/15 01:20:332364------0.733738-0.0000000.000000NMTNoBaseline, transformer big only EN-HI, beam=8, alpha=0.8, averaging 8 steps after 330k steps
24cvitHINDENen-hi2019/03/15 01:31:412644------0.718374-0.0000000.000000NMTYesmassive-multi + ft
25ORGANIZERHINDENen-hi2016/07/26 10:07:481032------0.7167880.0000000.0000000.000000OtherYesOnline A (2016)
26cvitHINDENen-hi2018/09/09 01:20:092251------0.714197-0.0000000.000000NMTNoConvS2S Model. IIT-Bombay data filtered with langdetect. + Backtranslated Monolingual Data ppl in [0.05, 0.14]
27XMUNLPHINDENen-hi2017/07/20 23:07:381422------0.7128760.0000000.0000000.000000NMTNosingle nmt model
28ORGANIZERHINDENen-hi2018/11/13 14:54:582566------0.710210-0.0000000.000000NMTNoNMT with Attention
29ORGANIZERHINDENen-hi2016/07/26 13:24:221047------0.6912980.0000000.0000000.000000OtherYesOnline B (2016)
30IITP-MTHINDENen-hi2016/08/18 23:13:251185------0.6889130.0000000.0000000.000000SMTYesIITP-MT System1
31IITB-MTGHINDENen-hi2017/08/01 15:09:011725------0.6886060.0000000.0000000.000000NMTNoNMT with ensemble (last 3 + best validation)
32IITP-MTHINDENen-hi2016/08/29 18:51:441290------0.6830220.0000000.0000000.000000SMTNoIITP-MT System2
33EHRHINDENen-hi2016/08/17 14:30:081166------0.6718660.0000000.0000000.000000SMTNoPBSMT with preordering (DL=6)
34ORGANIZERHINDENen-hi2016/08/20 17:41:361252------0.6511660.0000000.0000000.000000SMTNoPhrase-based SMT
35IITB-MTGHINDENen-hi2017/09/05 23:04:581763------0.3012410.0000000.0000000.000000NMTNo

Notice:

Back to top

AMFM


# Team Task Date/Time DataID AMFM
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1WTHINDENen-hi2020/09/03 23:14:363640------0.873830---NMTYesMultilingual-ensembleX3
2WTHINDENen-hi2020/09/03 18:20:143639------0.869400---NMTNoUsed 5M Back translation news crawl data to train. Method: Transformer NMT; Preprocessing: 1. Removed mixed language sentences 2. moses tokeniser for English and for Hindi indicnlp normaliser and toke
3cvitHINDENen-hi2020/07/10 04:40:193436------0.868770---NMTYesMultilingual model, uses pib-v2 data
4cvitHINDENen-hi2020/07/06 19:08:493427------0.867360---NMTYesMultilingual Transformer model.
5cvitHINDENen-hi2020/07/06 19:22:293428------0.866410---NMTYesMultilingual Transformer model. Uses pib-v0 data.
6NICT-5HINDENen-hi2020/09/18 17:47:183935------0.864600---NMTNoMBART Fine Tune on approx. 900k sentence pairs from whole HindEn dataset.
7NICT-5HINDENen-hi2021/03/18 23:06:494571------0.861970---NMTYesFT on an mBART model. Beam size 8.
8NICT-5HINDENen-hi2021/03/17 22:51:474557------0.861390---NMTNoEnHi nmt model trained using my own toolkit. Only the parallel corpus is used. No fine tuning no pretraining. beam 4 lp 1.0.
9cvitHINDENen-hi2018/09/18 15:21:132489------0.712200-0.0000000.000000NMTYesTransformer Base. Uses External Data
10cvitHINDENen-hi2018/09/18 22:37:372500------0.712110-0.0000000.000000NMTYesAveraging Models from epochs 61-68. Base Transformer. Uses External Data.
11cvitHINDENen-hi2018/09/18 21:58:212496------0.712010-0.0000000.000000NMTYesTransformer Base. Uses External Data. Averaging of Checkpoints Enabled.
12CUNIHINDENen-hi2018/09/15 01:12:402361------0.704220-0.0000000.000000NMTNoTransformer big, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 1300k steps
13cvitHINDENen-hi2019/05/27 16:03:362680------0.702380-0.0000000.000000NMTYesmassive-multi + bt
14cvitHINDENen-hi2019/03/15 01:21:272642------0.701670-0.0000000.000000NMTYesmassive-multi
15CUNIHINDENen-hi2018/09/15 01:22:032365------0.701300-0.0000000.000000NMTNoTransformer big, transfer learning from EN-CS 1M steps, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 700k steps
16CUNIHINDENen-hi2018/09/13 22:18:142320------0.700240-0.0000000.000000NMTNoBig Transformer model with backtranslation, with transfer learning from English to Czech.
17cvitHINDENen-hi2018/09/09 21:12:292254------0.699810-0.0000000.000000NMTYesConvS2S. Uses external data.
18cvitHINDENen-hi2018/09/07 12:29:042235------0.697630-0.0000000.000000NMTYesConvS2S Model. External Data is used.
19CUNIHINDENen-hi2018/09/15 01:14:342362------0.693830-0.0000000.000000NMTNoTransformer big, transfer learning from EN-CS 1M steps, followed by only backtranslation EN-HI for 300k steps, followed by original EN-HI for 500k steps, beam=8; alpha=0.8; averaging of last 8 models.
20CUNIHINDENen-hi2018/09/15 01:19:042363------0.690150-0.0000000.000000NMTNoTransformer big, transfer learning from EN-CS 1M steps, only original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 230k steps.
21XMUNLPHINDENen-hi2017/07/28 23:38:291576------0.6887700.0000000.0000000.000000NMTNoensemble of 4 nmt models + monolingual data
22XMUNLPHINDENen-hi2017/07/27 22:04:541508------0.6825000.0000000.0000000.000000NMTNosingle nmt model + monolingual data
23CUNIHINDENen-hi2018/09/15 01:20:332364------0.681460-0.0000000.000000NMTNoBaseline, transformer big only EN-HI, beam=8, alpha=0.8, averaging 8 steps after 330k steps
24cvitHINDENen-hi2019/03/15 01:31:412644------0.680620-0.0000000.000000NMTYesmassive-multi + ft
25ORGANIZERHINDENen-hi2016/07/26 10:07:481032------0.6706600.0000000.0000000.000000OtherYesOnline A (2016)
26ORGANIZERHINDENen-hi2016/07/26 13:24:221047------0.6684500.0000000.0000000.000000OtherYesOnline B (2016)
27cvitHINDENen-hi2018/09/09 01:20:092251------0.664330-0.0000000.000000NMTNoConvS2S Model. IIT-Bombay data filtered with langdetect. + Backtranslated Monolingual Data ppl in [0.05, 0.14]
28IITP-MTHINDENen-hi2016/08/29 18:51:441290------0.6632100.0000000.0000000.000000SMTNoIITP-MT System2
29ORGANIZERHINDENen-hi2016/08/20 17:41:361252------0.6608600.0000000.0000000.000000SMTNoPhrase-based SMT
30IITP-MTHINDENen-hi2016/08/18 23:13:251185------0.6573300.0000000.0000000.000000SMTYesIITP-MT System1
31EHRHINDENen-hi2016/08/17 14:30:081166------0.6507500.0000000.0000000.000000SMTNoPBSMT with preordering (DL=6)
32XMUNLPHINDENen-hi2017/07/20 23:07:381422------0.6477400.0000000.0000000.000000NMTNosingle nmt model
33ORGANIZERHINDENen-hi2018/11/13 14:54:582566------0.644860-0.0000000.000000NMTNoNMT with Attention
34IITB-MTGHINDENen-hi2017/08/01 15:09:011725------0.6247800.0000000.0000000.000000NMTNoNMT with ensemble (last 3 + best validation)
35IITB-MTGHINDENen-hi2017/09/05 23:04:581763------0.4633500.0000000.0000000.000000NMTNo

Notice:

Back to top

HUMAN (WAT2020)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1WTHINDENen-hi2020/09/03 23:14:3636403.560NMTYesMultilingual-ensembleX3
2WTHINDENen-hi2020/09/03 18:20:1436393.490NMTNoUsed 5M Back translation news crawl data to train. Method: Transformer NMT; Preprocessing: 1. Removed mixed language sentences 2. moses tokeniser for English and for Hindi indicnlp normaliser and toke

Notice:
Back to top

HUMAN (WAT2019)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1cvitHINDENen-hi2019/05/27 16:03:362680UnderwayNMTYesmassive-multi + bt

Notice:
Back to top

HUMAN (WAT2018)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1CUNIHINDENen-hi2018/09/15 01:14:34236277.000NMTNoTransformer big, transfer learning from EN-CS 1M steps, followed by only backtranslation EN-HI for 300k steps, followed by original EN-HI for 500k steps, beam=8; alpha=0.8; averaging of last 8 models.
2cvitHINDENen-hi2018/09/09 21:12:29225469.500NMTYesConvS2S. Uses external data.
3CUNIHINDENen-hi2018/09/15 01:22:03236560.000NMTNoTransformer big, transfer learning from EN-CS 1M steps, only backtranslation EN-HI, no original EN-HI, beam=8; alpha=0.8; averaging of last 8 models after 700k steps
4cvitHINDENen-hi2018/09/09 01:20:09225150.500NMTNoConvS2S Model. IIT-Bombay data filtered with langdetect. + Backtranslated Monolingual Data ppl in [0.05, 0.14]
5cvitHINDENen-hi2018/09/07 12:29:042235UnderwayNMTYesConvS2S Model. External Data is used.

Notice:
Back to top

HUMAN (WAT2017)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1XMUNLPHINDENen-hi2017/07/28 23:38:29157664.500NMTNoensemble of 4 nmt models + monolingual data
2IITB-MTGHINDENen-hi2017/08/01 15:09:01172528.750NMTNoNMT with ensemble (last 3 + best validation)

Notice:
Back to top

HUMAN (WAT2016)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1ORGANIZERHINDENen-hi2016/07/26 10:07:48103257.250OtherYesOnline A (2016)
2ORGANIZERHINDENen-hi2016/07/26 13:24:22104742.500OtherYesOnline B (2016)
3IITP-MTHINDENen-hi2016/08/18 23:13:2511854.750SMTYesIITP-MT System1
4EHRHINDENen-hi2016/08/17 14:30:0811660.000SMTNoPBSMT with preordering (DL=6)

Notice:
Back to top

HUMAN (WAT2015)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2014)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

EVALUATION RESULTS USAGE POLICY

When you use the WAT evaluation results for any purpose such as:
- writing technical papers,
- making presentations about your system,
- advertising your MT system to the customers,
you can use the information about translation directions, scores (including both automatic and human evaluations) and ranks of your system among others. You can also use the scores of the other systems, but you MUST anonymize the other system's names. In addition, you can show the links (URLs) to the WAT evaluation result pages.

NICT (National Institute of Information and Communications Technology)
Kyoto University
Last Modified: 2018-08-02