NICT_LOGO.JPG KYOTO-U_LOGO.JPG

WAT

The Workshop on Asian Translation
Evaluation Results

[EVALUATION RESULTS TOP] | [BLEU] | [RIBES] | [AMFM] | [HUMAN (WAT2022)] | [HUMAN (WAT2021)] | [HUMAN (WAT2020)] | [HUMAN (WAT2019)] | [HUMAN (WAT2018)] | [HUMAN (WAT2017)] | [HUMAN (WAT2016)] | [HUMAN (WAT2015)] | [HUMAN (WAT2014)] | [EVALUATION RESULTS USAGE POLICY]

BLEU


# Team Task Date/Time DataID BLEU
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1goku20JPCN3ja-zh2020/09/22 00:17:134115-43.31--44.7444.98----NMTNomBART pre-training transformer, ensemble of 3 models
2goku20JPCN3ja-zh2020/09/21 12:25:224100-42.86--44.3444.60----NMTNomBART pre-training transformer, single model
3Bering LabJPCN3ja-zh2021/04/30 13:29:425849-31.29--30.7431.24----NMTYesTransformer Ensemble with additional crawled parallel corpus
4sarahJPCN3ja-zh2019/07/26 11:40:402984-29.46--30.0129.98----NMTNoTransformer, ensemble of 4 models
5KNU_HyundaiJPCN3ja-zh2019/07/27 08:49:473169-29.52--29.1929.15----NMTYesTransformer(base) + *Used ASPEC corpus* with relative position, bt, r2l rerank, 4-model ensemble(9-check point)
6ryanJPCN3ja-zh2019/07/25 22:10:402953-28.42--28.9228.88----NMTNoBase Transformer
7sakuraJPCN3ja-zh2024/08/08 19:23:487257-27.00--26.4026.40----OtherNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh) - Best
8sakuraJPCN3ja-zh2024/08/09 00:39:227303-26.90--26.2026.30----NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh)
9USTCJPCN3ja-zh2018/08/31 17:12:272204-24.19--24.9324.87-- 0.00 0.00NMTNotensor2tensor, 4 model average, r2l rerank
10ORGANIZERJPCN3ja-zh2018/08/15 18:25:421962-23.76--23.7423.54-- 0.00 0.00NMTNoNMT with Attention
11tpt_watJPCN3ja-zh2021/04/27 01:53:285697-21.75--22.1921.97----NMTNoBase Transformer model with separate vocab, size 8k

Notice:

Back to top

RIBES


# Team Task Date/Time DataID RIBES
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1KNU_HyundaiJPCN3ja-zh2019/07/27 08:49:473169-0.851317--0.8521430.856831----NMTYesTransformer(base) + *Used ASPEC corpus* with relative position, bt, r2l rerank, 4-model ensemble(9-check point)
2Bering LabJPCN3ja-zh2021/04/30 13:29:425849-0.857304--0.8514670.856178----NMTYesTransformer Ensemble with additional crawled parallel corpus
3sarahJPCN3ja-zh2019/07/26 11:40:402984-0.837387--0.8391830.840445----NMTNoTransformer, ensemble of 4 models
4goku20JPCN3ja-zh2020/09/21 12:25:224100-0.833748--0.8383040.837036----NMTNomBART pre-training transformer, single model
5ryanJPCN3ja-zh2019/07/25 22:10:402953-0.833853--0.8292200.835331----NMTNoBase Transformer
6goku20JPCN3ja-zh2020/09/22 00:17:134115-0.833995--0.8355780.832387----NMTNomBART pre-training transformer, ensemble of 3 models
7USTCJPCN3ja-zh2018/08/31 17:12:272204-0.824837--0.8248020.828799--0.0000000.000000NMTNotensor2tensor, 4 model average, r2l rerank
8sakuraJPCN3ja-zh2024/08/08 19:23:487257-0.824355--0.8230170.826219----OtherNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh) - Best
9sakuraJPCN3ja-zh2024/08/09 00:39:227303-0.820944--0.8211740.823358----NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh)
10tpt_watJPCN3ja-zh2021/04/27 01:53:285697-0.800387--0.8019130.800922----NMTNoBase Transformer model with separate vocab, size 8k
11ORGANIZERJPCN3ja-zh2018/08/15 18:25:421962-0.789665--0.7873670.788820--0.0000000.000000NMTNoNMT with Attention

Notice:

Back to top

AMFM


# Team Task Date/Time DataID AMFM
Method
Other
Resources
System
Description
unuse unuse unuse unuse unuse unuse unuse unuse unuse unuse
1Bering LabJPCN3ja-zh2021/04/30 13:29:425849-0.881429--0.8814290.881429----NMTYesTransformer Ensemble with additional crawled parallel corpus
2tpt_watJPCN3ja-zh2021/04/27 01:53:285697-0.847795--0.8477950.847795----NMTNoBase Transformer model with separate vocab, size 8k
3ORGANIZERJPCN3ja-zh2018/08/15 18:25:421962-0.000000--0.0000000.000000--0.0000000.000000NMTNoNMT with Attention
4USTCJPCN3ja-zh2018/08/31 17:12:272204-0.000000--0.0000000.000000--0.0000000.000000NMTNotensor2tensor, 4 model average, r2l rerank
5ryanJPCN3ja-zh2019/07/25 22:10:402953-0.000000--0.0000000.000000----NMTNoBase Transformer
6sarahJPCN3ja-zh2019/07/26 11:40:402984-0.000000--0.0000000.000000----NMTNoTransformer, ensemble of 4 models
7KNU_HyundaiJPCN3ja-zh2019/07/27 08:49:473169-0.000000--0.0000000.000000----NMTYesTransformer(base) + *Used ASPEC corpus* with relative position, bt, r2l rerank, 4-model ensemble(9-check point)
8goku20JPCN3ja-zh2020/09/21 12:25:224100-0.000000--0.0000000.000000----NMTNomBART pre-training transformer, single model
9goku20JPCN3ja-zh2020/09/22 00:17:134115-0.000000--0.0000000.000000----NMTNomBART pre-training transformer, ensemble of 3 models
10sakuraJPCN3ja-zh2024/08/08 19:23:487257-0.000000--0.0000000.000000----OtherNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh) - Best
11sakuraJPCN3ja-zh2024/08/09 00:39:227303-0.000000--0.0000000.000000----NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh)

Notice:

Back to top

HUMAN (WAT2022)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2021)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2020)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2019)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1sarahJPCN3ja-zh2019/07/26 11:40:402984UnderwayNMTNoTransformer, ensemble of 4 models
2KNU_HyundaiJPCN3ja-zh2019/07/27 08:49:473169UnderwayNMTYesTransformer(base) + *Used ASPEC corpus* with relative position, bt, r2l rerank, 4-model ensemble(9-check point)

Notice:
Back to top

HUMAN (WAT2018)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2017)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2016)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2015)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2014)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

EVALUATION RESULTS USAGE POLICY

When you use the WAT evaluation results for any purpose such as:
- writing technical papers,
- making presentations about your system,
- advertising your MT system to the customers,
you can use the information about translation directions, scores (including both automatic and human evaluations) and ranks of your system among others. You can also use the scores of the other systems, but you MUST anonymize the other system's names. In addition, you can show the links (URLs) to the WAT evaluation result pages.

NICT (National Institute of Information and Communications Technology)
Kyoto University
Last Modified: 2018-08-02