NICT-2 Translation System for WAT2016: Applying Domain Adaptation to Phrase-based Statistical Machine Translation

Summary

- Domain adaptation method of Imamura+ (2016) was applied to WAT2016 data.
- Japan Patent Office Corpus (JPC) was regarded as a mixture of four domain corpora.
- Domain adaptation was effective on the patent data even if the domains are different.
- We added ASPEC as the fifth domain, but there were no effects.
- > The patent data was not effective to the scientific paper domain.
- Google n-gram language models are added as external knowledge.
- Our domain adaptation can easily incorporate such knowledge.

Domain Adaptation (Imamura+ 2016)

Adaptation of Weight Vector

- Feature weights are optimized using feature augmentation (Daumé 2007).
- A feature space is expanded to common and domain-specific spaces.
- All domains are simultaneously optimized/adapted.

All domains are simultaneously optimized/adapted.							
Feature Space							
	Common	Domain 1	Domain 2		Domain D		
Domain 1 Data	$\Phi_c(f_1.,e_1.)$	$\Phi_1(f_1.,e_1.)$	Ø		Ø		
Domain 2 Data	$\Phi_c(f_2.,e_2.)$	Ø	$\Phi_2(f_2.,e_2.)$		Ø		
	:	:	:		:		
Domain D Data	$\Phi_c(f_D.,e_D.)$	Ø	Ø		$\Phi_D(f_{D\cdot},e_{D\cdot})$		
Optimization							
Feature Weights	w_c	w_1	w_2		w_D		

Subspaces used for

the translation in the domain 2

Domain

Domain

Domain

Adaptation of Feature Vector

the translation in the domain 1

Subspaces used for

- Models are changed according to the feature spaces.
- ◆ For the common space, we use a corpus-concatenated model, which is trained from corpora of all domains.
- For the domain specific spaces,
 we use single-domain models,
 which are trained from specific domain data.
- This distinction matches meanings of the spaces.

Decoding Procedure

- 1. Phrase pairs are retrieved from both the corpus-concatenated and single-domain phrase tables.
- 2. Features of the corpus-concatenated model are located to the common space, and those of the single-domain model are located to the domain-specific space.
- 3. During search of the best hypothesis, the likelihoods are computed using only the common space and domain-specific space of the input sentence.

Domain/Corpora

- Japan Patent Office Corpus (JPC) was regarded as a mixture of four domains.
- Asian Scientific Paper Excerpt Corpus (ASPEC) was used as the fifth domain corpus.
- ◆ The language pairs: Japanese-English (Ja-En) and Japanese-Chinese (Ja-Zh).

		#training sents.		
Corpus	Domain	Ja-En pair	Ja-Zh pair	
JPC	Chemistry	250k	250k	
	Electricity	250k	250k	
	Machine	250k	250k	
	Physics	250k	250k	
ASPEC	ASPEC	1,000k	672k	

Implementation Notices

Empty Value

 A value of feature functions when phrases appear only one of the corpus-concatenated or single domain models (unknown probability).

Common	Domain i
Φ_c (translation,翻訳)	Φ_i (translation, 翻訳)
(-1.7, -6.3, -2.2, -7.6)	?? if the pair does not exist in the phrase table.

- We experimentally set to maximize the BLEU score of the development set.
- This time, empty= -7 (i.e., exp(-7) = 0.0009).

Large Monolingual Corpora

- External knowledge such as language models constructed from large monolingual corpora is located to the common space while increasing the dimension.
- Language models are constructed from Google n-gram, and added as the external knowledge.
- The back-off models are estimated using maximum likelihood.
- English Data: Web 1T 5-gram Version 1 (LDC2006T13)
 Japanese Data: Web Japanese N-gram Version 1 (http://www.gsk.or.jp/catalog/gsk2007-c/)

Optimization

- Independent optimization of Imamura+ (2016) was used.
- Each domain is optimized one-by-one.
- Optimization algorithm: K-best Batch MIRA.

Translation System

- Phrase-based SMT with preordering.
- Two preorderers:
- (1) Top-Down BTG (w/o external knowledge), and
- (2) In-house preorderer tuned to patents (w/ external knowledge, using Berkeley Parser).
- Moses clone decoder.

Kenji Imamura and Eiichiro Sumita National Institute of Information and Communications Technology

Experimental Results

Settings

- Domain Adaptation vs. {Single-Domain / Corpus Concatenation}
- Evaluation Metric: BLEU
 Statistical Testing: MultEval (p<0.05).
- The scores are different from the official scores.

JPO Corpus (w/o External Knowledge)

- Corpus Concatenation: JPC was regarded as one domain corpus.
- Single Domain Model: If we divided JPC into 4 domains, the translation quality decreased because the number of the training sentences in each domain is reduced.
- Domain Adaptation: The BLEU scores were the highest.

	JPC			
Method	Ja-En	En-Ja	Ja-Zh	Zh-Ja
Corpus Concatenation	36.22	38.03(-)	32.92(-)	39.68(-)
Single-Domain Model	35.12(-)	37.40 (-)	31.96(-)	38.15(-)
Domain Adaptation	36.29	38.48	33.36	39.85

JPO and ASPEC Corpus (w/ External Knowledge)

- On JPC, Google n-gram the language models and domain adaptation were both effective. They can be combined.
- On ASPEC, domain adaptation was not effective.
 This might be because the corpus size of ASPEC is large.

		JPC			
	Method	Ja-En	En-Ja	Ja-Zh	Zh-Ja
w/o	Corpus Concatenation	35.81(-)	38.62(-)	32.76(-)	39.96(-)
GN	Single-Domain Model	33.90(-)	38.19(-)	31.78(-)	38.74(-)
	Domain Adaptation	36.25	39.58	33.53	40.76
w/	Corpus Concatenation	36.03(-)	39.48(-)		40.14(-)
GN	Single-Domain Model	34.35(-)	39.04(-)		38.90(-)
	Domain Adaptation	36.40	40.32		40.77

			ASPEC				
		Method	Ja-En	En-Ja	Ja-Zh	Zh-Ja	
2000	w/o	Corpus Concatenation	22.20(-)	33.94(-)	28.95(-)	37.62(-)	
	GN	Single-Domain Model	22.79	34.80	29.47 (+)	38.96(-)	
Section 1		Domain Adaptation	22.80	34.91	29.28	39.18	
	w/	Corpus Concatenation	22.10(-)	34.55(-)		38.15(-)	
O PRINCES	GN	Single-Domain Model	22.87 (+)	35.42		39.74(-)	
		Domain Adaptation	22.74	35.36		39.87	

References

- Hal Daumé III. 2007. Frustratingly Easy Domain Adaptation.
 In Proc. of ACL-2007, pp. 256-263.
- Kenji Imamura and Eiichiro Sumita. 2016. Multi-domain Adaptation for Statistical Machine Translation Based on Feature Augmentation. In Proc. o AMTA-2016. pp. 79-92.