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Abstract
Although language-agnostic sequence-to-sequence pre-training methods us-
ing large monolingual corpora lead to nontrivial improvements for low-
resource neural machine translation (NMT), such methods still can not gen-
erate adequate and fluent translations. Previous work showed that specific
linguistic knowledge can improve low-resource NMT, thus we suppose that
injecting linguistic knowledge in the pre-training phase will result in further
significant improvements for low-resource NMT.

In this work, we employ one of the state-of-the-art sequence-to-sequence
pre-training methods for low-resource NMT, MASS, as the main baseline,
and propose novel pre-training alternatives to MASS: JASS (JApanese-specific
Sequence to Sequence) for language pairs involving Japanese as the source
or target language, and ENSS (ENglish-specific Sequence to Sequence) for
language pairs involving English. JASS focuses on masking and reordering
Japanese linguistic units called bunsetsu, while ENSS is proposed based on
phrase structure masking and reordering tasks.

Experiments on ASPEC Japanese–English & Japanese–Chinese, Wikipedia
Japanese–Chinese, News Commentary Japanese–Russian translation show
that JASS and ENSS outperform MASS by up to +2.9 BLEU point for the
Japanese–English tasks, +7.0 BLEU point for the Japanese–Chinese tasks, and
+1.4 BLEU for the Japanese–Russian tasks. This shows the effectiveness of
our newly proposed linguistically-driven methods, ENSS and JASS.

Empirical analysis, focusing on the relationship between individual parts
within JASS and ENSS, reveals the complementary nature between their sub-
tasks. Adequacy evaluation by using LASER, human evaluation, and case
study focusing on JASS show that our proposed methods have a larger posi-
tive impact on the adequacy as compared to the fluency.
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低資源ニューラル機械翻訳のための言語知識に基づくマルチタスク事前学習

内容梗概

特定の言語によらない sequence-to-sequence事前学習は、大規模な単言語
コーパスを活用することにより、ニューラル機械翻訳（NMT）の低資源言語対
での翻訳精度を向上させることができるが、適切で流暢な翻訳文を既に生成で

きるわけではない。言語知識は低資源NMTモデルを改善できることが先行研
究で明らかにされたため、事前学習の段階で言語知識を注入することで低資源

NMTを大幅に改善できると考えられる。
本研究は、機械翻訳に対する state-of-the-art事前学習手法の一つ、MASSを
ベースラインとし、新たな事前学習タスクとして、日本語をソース言語または

ターゲット言語とするNMTモデルにおいて JASS (JApanese-specific Sequence
to Sequence)、英語に対して ENSS (ENglish-specific Sequence to Sequence)
を提案する。JASSと ENSSは、各々日本語文節、英語句構造を基にMasked
Language Modelと並べ替え (Reordering)タスクを同時に行う事前学習手法で
ある。

ASPEC日本語-英語と日本語-中国語、Wikipedia日本語-中国語、News Com-
mentary日本語-ロシア語に行った翻訳実験によると、JASSと ENSSは日本語-
英語、日本語-中国語、日本語-ロシア語の翻訳対にてMASSをそれぞれ最大+2.9
BLEU、+7.0 BLEU、+1.4 BLEUスコアで上回っている。これは、提案した言
語知識に基づく事前学習手法の有効性を示している。

実証的分析により、JASSとENSS内部の各サブタスク間の補完的な性質が明
らかになった。LASERを使用した適切性評価、人手評価、およびケーススタ
ディは、JASSが流暢さに比べて適切性に相当大きなプラスの影響を与えること
を示している。
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1 Introduction
Neural machine translation (NMT) [2, 48] has led to large improvements
in machine translation quality when large parallel corpora are available for
training. However, this need for parallel corpora strongly limits its usefulness
for many language pairs (Russian–Japanese, Marathi–English) and domains
(tourism, medical, social media) for which such corpora do not exist. Often,
these “poor" language pairs consist of languages that have “rich" monolingual
corpora. Therefore, it is possible to compensate the lack of bilingual training
corpora by leveraging large monolingual corpora. One popular approach for
this is data augmentation, e.g. by back-translation [42]. Another approach
is pre-training the NMT model on tasks that only require monolingual cor-
pora [37, 46].

Pre-training has seen a surge in popularity in NLP ever since models such
as BERT [7] have led to new state-of-the-art results in text understanding.
However, BERT-like models were not designed to be used for NMT in the
sense that they are essentially language models and not sequence to sequence
models. To address this, Song et al. [46] recently proposed masked sequence
to sequence pre-training (MASS), a pre-training task for NMT and obtained
new state-of-the-art results in low-resource settings.

Languages that are “rich" enough to have large monolingual corpora often
have available tools for linguistic analysis. In addition, works such as Sen-
nrich and Haddow [41] and Murthy et al. [28] have shown that “linguistic
knowledge" can improve NMT without using additional corpora. It seems,
therefore, natural to use both monolingual corpora and linguistic tools in
bilingual low-resource scenarios. However, because NMT models are end-to-
end, the manner in which linguistic hints should be provided is not always
clear.

It is practical to extract linguistic features on the monolingual side. There-
fore, pre-training provides an ideal framework both for leveraging monolin-
gual corpora and improving NMT models with linguistic information. First,
we focus on language pairs involving Japanese. Japanese is a language for
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which very high quality syntactic analyzers have been developed [20, 27].
Moreover, large parallel corpora involving Japanese exist only for a few num-
ber of language pairs and domain. As such it is critical to leverage both
monolingual corpora and the syntactic analysis of Japanese for optimal trans-
lation quality. On the other hand, pre-training for low-resource NMT is
required not only for Japanese, but also for any other language because the
number of the middle- or high-resource parallel corpora are definitely limited
until today.1) Thus, we further extend our proposal to more general scenarios
which can be transferred onto most of the languages.

First, we propose a linguistically motivated pre-training approach called
JASS (Japanese-specific Sequence to Sequence). JASS is inspired by MASS,
but focuses on syntactic analysis obtained by using a parser. In particular, we
add syntactic constraints to the sentence-masking process of MASS to obtain
our BMASS (Bunsetsu MASS) task.2) We also propose, BRSS (Bunsetsu Re-
ordering based Sequence to Sequence), a linguistically motivated reordering
task. Several previous works [21, 39] provided the evidence that “multi-task"
pre-training combining various styles of self-supervised training tasks signif-
icantly results in superior results for NMT. Thus, our JASS is proposed upon
a combination of the above-mentioned two tasks and is tailored for NMT
involving Japanese.

Second, we also propose methods for English to leverage syntax-specific
information in the pre-training phase. They are respectively named as PMASS
(Phrase structure based MASS) & HFSS (Head Finalization based Sequence
to Sequence), and their combination is denoted as ENSS (ENglish-specific Se-
quence to Sequence).3) Moreover, unlike proposed methods for Japanese, our
proposed methods for English can be transplanted onto any SVO language.

1) Although language pairs involving English are usually middle- or high-resource scenarios
(parallel corpora size over 100k), we deem that it is worth proposing methods for English
because there still exist a large number of low-resource language pairs involving English.

2) For BMASS, bunsetsus are the elementary syntactic component of Japanese. It can be
extracted by using KNP. [20, 27]

3) Head finalization [14] is the technique to reorder sentences in SVO language to be SOV-like
sentences.
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We experiment on ASPEC Japanese–English & Japanese–Chinese, Wikipedia
Japanese–Chinese, News Commentary Japanese–Russian in a variety of pre-
training settings. Our results show that BMASS, BRSS, and HFSS signifi-
cantly outperform the state-of-the-art MASS pre-training while PMASS yields
marginal improvements. Furthermore, we show that linguistically-driven
multi-task pre-training methods (JASS & ENSS) lead to further improve-
ments of up to +2.9 BLEU for Japanese to English, +2.7 BLEU for English
to Japanese, +4.3 BLEU for Japanese to Chinese , +7.0 BLEU for Chinese to
Japanese, +0.5 BLEU for Japanese to Russian, and +1.4 BLEU for Russian to
Japanese respectively in low-resource scenarios.

Our analysis focuses on the relationship between different pre-training
tasks, and the adequacy & fluency of corresponding translations. Specif-
ically, we validate the superior translation adequacy improvement of the
linguistically-driven methods by implementing automatic adequacy evalua-
tion by using LASER, human evaluation, and case study. Furthermore, we
confirm the complementary nature between masked language model and
reordering pre-training task by pre-training accuracy evaluation.

To the best of our knowledge, this is the first time syntactic information is
used in a sequence-to-sequence pre-training setting for NMT. The contribu-
tions of this paper can be summarized as follows:
1. BMASS and BRSS: Linguistically-driven novel pre-training methods for

NMT involving Japanese.
2. PMASS and HFSS: Linguistically-driven novel pre-training methods for

NMT involving English.
3. Multi-task pre-training: Showing that the multi-task training by com-

bining masked language model and reordering task leads to better per-
formance. Particularly, BMASS and BRSS can complement each other
more provided that they are performed based on analogous syntactic
units.

4. Empirical evaluation: A comparison of MASS, JASS, ENSS and other
baseline methods for 6 translation directions and 3 different domains in
several data size settings to identify situations where each technique can
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be the most effective.
5. Analysis: Linguistic and statistical analysis of pre-training methods,

their inter-relationships, and corresponding translations.
The JASS part of this work has been presented in LREC 2020 [24] and NLP

2020 [25].
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2 Related Work

2.1 Low-resource Neural Machine Translation
There are mainly three lines of work related to improving NMT in low-
resource situations: cross-lingual transfer, data augmentation and monolin-
gual pre-training. These approaches are potentially complementary. Our
work belongs to the monolingual pre-training category.

Cross-lingual transfer solves the low-resource issue by using data from
different language pairs. One can use a richer language pair [59], or several
language pairs at once [6, 8]. Murthy et al. [28] also proposed to reorder the
assisting languages to be similar to the low-resource language.

Data augmentation involves the creation of synthetic bilingual data from
monolingual data. In the popular back-translation approach [9, 11, 42], the
source side of the data is synthesized using a MT system to back-translate the
target side data. Recently, Zhou et al. [57] proposed to create this source side
by rule-based reordering followed by word-by-word translation.

In monolingual pre-training approaches, all or part of a model is first
trained on tasks that require monolingual data.1) Pre-training has enjoyed
great success in other NLP tasks with the development of GPT [38], BERT [7]
and many others [33, 47, 53].

Pre-training schemes like BERT were designed for natural language un-
derstanding (NLU) tasks and are not directly suitable for NMT. Conneau and
Lample [5] and Ren et al. [40] proposed variants that can be trained in a mul-
tilingual way. However, they train the encoder and decoder independently.
To address this, Song et al. [46] recently proposed MASS, a new state-of-the-
art NMT pre-training task that jointly trains the encoder and the decoder.
Our approach builds on the initial idea of MASS, but adds more diverse and
linguistically motivated training objectives.

Linguistic information is known to be useful for NMT [41], especially in
low-resource scenarios. Outside of pre-training, the works [28, 55, 57] have

1) This is an instance of “transfer learning" just like Cross-lingual transfer. “Pre-training"
often implies that the training task differs from the target task.
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successfully used a linguistically-motivated reordering like the one in our
BRSS task. Sun et al. [47] used some linguistically motivated pre-training tasks
for Text Understanding. We are not aware of previous work on linguistically
motivated pre-training tasks for NMT.

2.2 Pre-training Tasks for Neural Machine Translation
After the appearance of BERT [7], several pre-training methods were pro-
posed for enhancing NMT [5, 21, 22, 23, 39, 40, 44, 45, 46, 50, 51, 52]. Specifi-
cally, Song et al. [46] proposed a random span reconstruction task to pre-train a
sequence-to-sequence framework for NMT; Wang et al. [50] first proposed us-
ing shuffling, deleting, and replacing operations to implement the denoising
pre-training for NMT system; following them, Lewis et al. [21] combined the
denoising methods with masked language model pre-training of Song et al.
[46] and provided detailed empirical results for a large number of language
pairs; mBART [23] is a multilingual sequence-to-sequence denoising pre-
training pre-trained by denoising tasks on 25 languages including Japanese,
English, Chinese, Russian and others, which can be deemed as an extension
of Lewis et al. [21]; other works focus on leveraging the cross-lingual su-
pervision between languages by word alignment [22], phrase alignment [40],
sentence-level alignment [5], code switching technique [52], or assisting lan-
guages (shared scripts) [45].

Among the above mentioned tons of pre-training techniques for NMT,
we observe that no work has focused on leveraging specific linguistic fea-
tures for NMT. Syntactic span masking [58] and semantic-aware BERT [56]
have been proposed by using linguistically-driven supervisions for language
understanding tasks. However, linguistically-driven methods for sequence-
to-sequence pre-training should be considered and explored.

There also exist works focusing on improving MASS. Siddhant et al. [44]
adapted MASS to multilingual scenarios; Qi et al. [36] proposed using n-
stream self-attention mechanism to enhance MASS for language generation
task. No previous work attempted to enhance MASS from the linguistic point
of view, which will be first explored in our work.
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Moreover, Wang et al. [51] pointed out that multi-task learning can signif-
icantly benefit multilingual NMT. Besides the MT task, the essential jointly
learned tasks should be masked language model task and denoising (recon-
struction) tasks, which are two basic pre-training styles based on which we
propose our linguistically-driven methods.
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3 Proposed Methods
We first give some background information and then describe JASS and ENSS,
our pre-training techniques.

3.1 Preliminary Background
We describe the linguistic unit bunsetsu and MASS, both of which form the
base of JASS pre-training. Then we provide the background information of
head-driven phrase structure grammar and head finalization by which we
propose ENSS pre-training.
3.1.1 MASS
MASS is a pre-training method for NMT proposed by Song et al. [46]. As
shown in Figure 1, in MASS pre-training, the input is a sequence of tokens
where a part of the sequence is masked and the output is a sequence where
the masking is inverted.

Figure 1: Sequence to Sequence structure for MASS. xi represents a token
and x3 to x6 are consecutive tokens to be masked/predicted.

Formally, consider x ∈ X which is a sequence of tokens where X is a
monolingual corpus. Consider C = [pi, pj] where 0 < pi ≤ pj ≤ len(x) and
len(x) is the number of tokens in sentence x. We denote by xC the masked
sequence where tokens in positions from pi to pj in x are replaced by a mask
token [M ]. x!C is the sequence with inverted mask, i.e. where tokens in
positions other than the aforementioned fragments are replaced by the mask
token [M ]. In MASS, the pre-training objective is to predict the masked
fragments in x using an encoder-decoder model where xC is the input to
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Figure 2: Word and bunsetsu segmentations for a Japanese sentence with
meaning ‘LoveLive is made of three projects." In the word-by-word English
translations, “_" represents words with no meaningful translations.

the encoder and x!C is the target output for the decoder. The log likelihood
objective function is:

Lmass(X ) =
1

|X |
∑
x∈X

logP
(
x!C |xC ; θ

)
(1)

where θ is set of model parameters. The number of tokens to be masked is
a hyper-parameter of MASS. The NMT model is pre-trained with the MASS
task jointly for both source and target languages.
3.1.2 Bunsetsu
Bunsetsu is the syntactic component of Japanese sentences [20, 27]. It is
roughly equivalent to the concepts of noun phrases or verb phrases in English
syntax and constitutes a minimal unit of meaning. The concept of “word"
is ambiguous for writing systems like Japanese where word-separators are
not applicable, and Japanese segmenters [20, 27] can segment a Japanese
sentence either in words or in bunsetsus. As such, bunsetsu is also more
likely to correspond to a well-defined entity or concept than words. The
difference between word-level and bunsetsu-level segmentation is illustrated
in Figure 2. Note that each bunsetsu contains self-contained information and
case markers, which indicates its relation with other bunsetsus.
3.1.3 Head-driven Phrase Structure Grammar
As opposed to a dependency based grammar, Head-driven Phrase Structure
Grammar (HPSG) [34, 35] is a lexicalism based grammar that focuses on
generalizing phrase structures. HPSG primarily handles word and phrase
signs within a sentence in terms of syntactic and semantic role of themselves.
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Figure 3: An example of HPSG parsing result and head finalization. Head
finalization reorders an English sentence to Japanese-like sentence. [14]

Thus, HPSG should be an appropriate parsing rule for extracting phrase
structures in sentences and applying the following proposed pre-training
techniques. Figure 3 above shows an instance of parsing an English sentence
by HPSG grammar.
3.1.4 Head Finalization
By HPSG mentioned above, sentences in any language can be characterized
by phrase structures. By the definition of phrase, the “head" of a phrase is
then defined to be the syntactically determinant part within a phrase. In
other words, “head" determines the syntactic category of the phrase and its
“dependents." Specifically, English is called “head-initial" language because
“head" appears before its “dependents" while Japanese is named by "head-
final" language for that “head" usually follows “dependents" within a phrase.

The deliberate phrase structures given by HPSG parser are utilized in
several scenes in NLP. Particularly, Isozaki et al. [14] proposed a simple re-
ordering rule for SVO language (head-initial languages) by using the phrase
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structure information given by HPSG parser. Figure 3 above shows an ex-
ample of reordering an English sentence to be SOV-like sentence on the basis
of the result of HPSG parsing. Via reordering sentences in SVO languages
like English to be SOV-like sentences, performances of Statistical Machine
Translation (SMT) have been improved. Specifically, Isozaki et al. [14] first
proposed head finalization and applied it into English-to-Japanese SMT; Han
et al. [10] applied it into Chinese-to-Japanese SMT and obtained significant
improvements; more recently, Zhou et al. [57] utilized this reordering tech-
nique to generate synthetic parallel sentences in the back-translation phase
on the translation between SOV and SVO languages. This time we utilize this
reordering rule in the pre-training phase for NMT (see Section 3.3.2).

3.2 Proposed Methods for Japanese
Our methods are built on the ideas of the original MASS and are improved by
jointly learning multiple linguistics-aware tasks. For Japanese, we propose
BMASS (Bunsetsu-based MAsked Sequence to Sequence pre-training) and
BRSS (Bunsetsu Reordering based Sequence to Sequence pre-training). Their
combination, JASS (Japanese-specific Sequence to Sequence pre-training), is
introduced in the following section.
3.2.1 BMASS
We propose BMASS, which leverages syntactic parses of Japanese monolin-
gual data for sequence to sequence pre-training. While MASS pre-trains a
NMT model by making it predict random parts of a sentence given their con-
text, BMASS involves making the model predict a set of bunsetsus given the
contextual bunsetsus. We expect this will let the model learn about bunsetsus
and thereby focus on predicting meaningful subsequences instead of random
albeit fluent ones.

To perform BMASS, we modify the definition of mask C in Equation 1:
C = [[pi1 , pj1 ], [pi2 , pj2 ], ...[pin , pjn ]], where 0 < pi1 ≤ pj1 ≤ pi2 ≤ pj2 ≤ ...pin ≤
pjn ≤ len(x) and len(x) is the number of tokens in sentence x. Subsequently,
the k − th position span pik to pjk correspond to the start and end of the
specific bunsetsu within a Japanese sentence. Consequently we denote the
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Figure 4: An example of source and target for MASS, BMASS, BRSS with the
meaning “LoveLive is made of three projects."

BMASS loss as Lbmass. The main difference between MASS and BMASS is
that in MASS we mask random token spans whereas in BMASS we only mask
tokens spans that are complete bunsetsus. The number of bunsetsus to be
masked constitutes a hyper-parameter for BMASS. Figures 4-b and 4-c give
training pair examples for MASS and BMASS.

Note that our BMASS pre-training task differs from the entity masking
task of ERNIE [47] and random span masking of SpanBERT [16]. ERNIE and
SpanBERT are proposed without using syntactic units and are for language
understanding downstream tasks.
3.2.2 BRSS
Japanese sentences are typically in a SOV word order which can be reordered
to SVO in order to reduce the difficulty of translation to languages with SVO
order. We first define here a simple process for reordering a (typically SOV)
Japanese sentence into a “SVO Japanese" pseudo-sentence which will be used
in BRSS. There exist several previous works about reordering a SOV-ordered
sentence to a SVO-ordered sentence [12, 19]. In our case, in order to leverage
bunsetsu units in Japanese consistently with BMASS, we propose Bunsetsu-
based Reordering, which is able to generate a SVO-ordered Japanese sentence
while retaining syntactic information at the bunsetsu-level. We first define
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“chunking signal words" as any punctuation mark or the topic marker “は".
Our re-odering process is as follows:
1. split the sentence into bunsetsus
2. select sequences of bunsetsus bounded by chunking signal words
3. simply reverse the order of the bunsetsus in these sequences without

using rules
We can now propose BRSS which involves a Japanese sentence and its

reordered version obtained using the aforementioned procedure. Refer to
Figure 4-d for an example of a bunsetsu reordered sentence. The pre-training
objective here is a reordering task. We expect that this will let the system learn
the structure of Japanese language, as well as prepare it for the reordering
operation it will have to perform when translating to a language with different
grammar. We have two choices where we can make the NMT system predict
the original sentence given the reordered sentence (BRSS.F) or vice-versa
(BRSS.R). We will experiment with both options.

3.3 Proposed Methods for English
Similar to the proposed methods for Japanese, we propose two linguistically-
driven methods for English which are respectively based on the masked
sequence-to-sequence language model and reordering sequence-to-sequence
language model. One is PMASS (Phrase-based MAsked Sequence-to-Sequence
pre-training) and the other is HFSS (Head Finalization based Sequence-
to-Sequence pre-training). The combination of PMASS and HFSS, ENSS
(ENglish-specific Sequence to Sequence pre-training), is introduced in the
next section.
3.3.1 PMASS
We propose PMASS by leveraging phrase span information within an English
sentence. Generally speaking, we construct PMASS pre-training by limiting
the masked tokens in MASS to be an entire phrase span or phrase spans. Thus,
for masking plural phrase spans, we denote it as PMASS.P; for masking just
a single phrase span, we name it PMASS.S. Specifically, the source and target
for PMASS.P and PMASS.S pre-training can be generated by our proposed
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Algorithm 1: The algorithm of determining masked phrase spans for
PMASS.P.

Input: Length of the sentence L, tree of HPSG parsing result for the
sentence T.

Output: M. (tokens to be masked)
1 Function Pmass(N , L, l, M):
2 if tag of N is sentence then
3 return Pmass(child of N, L, l, M)
4 else if tag of N is tok then
5 if int(L/2)− l > 0 then
6 M.append(token on N)
7 return M

8 else if N only has one child and N.tag is cons then
9 return Pmass(child of N, L, l, M)

10 else
11 ll← number of tokens on the left child of N ;
12 lr← number of tokens on the right child of N ;
13 if ll is 1 and lr is 1 then
14 if int(L/2)− l > 1 then
15 M.append(token on N)
16 return M

17 else if int(L/2) <= l then
18 return M
19 else if ll <= int(L/2)− l and lr > int(L/2)− l then
20 if random p < 0.5 then
21 M ←M+ tokens on the left child of N;
22 l← l + ll;
23 return Pmass(right child of N, L, l, M)

24 else
25 return Pmass(right child of N, L, l, M)
26 end
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27

28

29 else if lr <= int(L/2)− l and ll > int(L/2)− l then
30 if random p < 0.5 then
31 M ←M+ tokens on the right child of N;
32 l← l + lr;
33 return Pmass(left child of N, L, l, M)

34 else
35 return Pmass(left child of N, L, l, M)
36 end

37 else if ll > int(L/2)− l and lr > int(L/2)− l then
38 if random p < 0.5 then
39 return Pmass(left child of N, L, l, M)
40 else
41 return Pmass(right child of N, L, l, M)
42 end

43 else
44 M ←M+ tokens on the left child of N;
45 l← l + ll;
46 return Pmass(right child of N, L, l, M)

47 end

48 Initialize Current Node N by ROOT of T, Empty Token List M;
49 l← 0 ;
50 Pmass(N, L, l, M)
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Algorithm 2: The algorithm of determining masked phrase spans for
PMASS.S.

Input: Length of the sentence L, tree of HPSG parsing result for the
sentence T.

Output: Token List M consisting of all the tokens on N. (to be masked)
1 Initialize Current Node N by ROOT of T;
2 while number of tokens on N > int(L/2) do
3 if number of tokens on left child of N > number of tokens on right child

of N then
4 N ← left child of N ;
5 else
6 N ← right child of N ;
7 end

8 end

phrase-masking algorithms described in Algorithm 1 and 2. Inspired by
MASS, we force the number of the masked tokens to approximate the half
of the length of the sentence to guarantee the effectiveness of sequence-to-
sequence masked language model. Examples of PMASS.P and PMASS.S are
given in Figure 5-c. We can observe that several phrase spans in PMASS.P and
a single long phrase span in PMASS.S are masked. We expect such special
masking patterns can force the NMT system to extract more phrase-level
syntactic information in the pre-training phase.
3.3.2 HFSS
We propose HFSS by head finalization technique [14] for pre-training English.
As shown by Figure 5-d, the pre-training task is also a reordering task, which
simulates the translation from SOV languages to English. More precisely, the
source sentence for sequence-to-sequence pre-training is the reordered (SOV-
like or head-finalized) English sentence and the target sentence is the original
English monolingual sentence. We expect HFSS can help the system learn
the word reordering pattern of the translation between SVO (head-initial) and
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Figure 5: An example of source and target for MASS, PMASS, HFSS of a
sentence in English."

SOV (head-final) languages in advance.
Based on the prior experiments for Japanese (see 5.1), we here do not

distinguish HFSS with HFSS.F and HFSS.R (HFSS.F performs pre-training
with SOV-SVO pattern while HFSS.R performs the resverse pattern). Instead,
we directly define HFSS by the pre-training pattern of HFSS.F. Moreover, here
HFSS is built on the base of head finalization, which utilizes the results from
HPSG parsers. It is consistent with PMASS in which we extract phrases by
HPSG parsing results.

We build up our proposal on English by head finalization while for SOV
languages like Japanese, it is unmanageable to reorder SOV sentences to
SVO-like ones [14]. Furthermore, HFSS can be used for all the head-initial
languages besides English as well-developed reordering rules have been pro-
posed and demonstrated effective for NMT. However, BRSS can only be imple-
mented for Japanese-involved translation pairs because bunsetsu information
is required to establish the source and target sentence for the sequence-to-
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sequence pre-training.

3.4 Multi-task Pre-training
Multi-task pre-training objectives lead to robuster initial state for NMT sys-
tem [21, 39]. Because our proposed methods can also be categorized into two
groups of the pre-training tasks, here we give the proposal of the multi-task
pre-training tasks for both Japanese and English.

We define JASS (JApanese-specific Sequence to Sequence) pre-training
which is a combination of the previous two procedures: BMASS and BRSS.
Our actual pre-training will consist of joint execution of these two pre-training.
The pre-training objective for JASS is therefore:

Ljass(Xja) = Lbmass(Xja) + Lbrss(Xja) (2)

where Xja represents the monolingual corpus of Japanese and Lbrss is the
reordering loss using the forward or the reverse variant mentioned in Sec-
tion 3.2.2. We expect BMASS & BRSS to learn syntactic knowledge jointly and
BRSS to learn word ordering knowledge.

For English, we similarly define ENSS (ENglish-specific Sequence to Se-
quence) pre-training, which combines PMASS and HFSS. More precisely, the
training objective is:

Lenss(Xen) = Lpmass(Xen) + Lhfss(Xen) (3)

where Xen denotes the monolingual corpus of English, Lpmass indicates the
PMASS.P or PMASS.S loss, and Lhfss indicates the reordering loss of HFSS.

JASS is specifically designed for Japanese while theoretically ENSS can
be transplanted onto any SVO language as long as we can extract the phrase
structure information of the corresponding language from a HPSG parser.

We also mix JASS pre-training for Japanese with MASS pre-training for the
other language involved in the translation. In practice, we therefore designate
by JASS the pre-training of the NMT system that uses Japanese monolingual
data with BMASS and BRSS objectives, and “other language" monolingual
data with MASS objective. Likewise, for English, ENSS pre-training consists
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of PMASS & HFSS for English and MASS for “other language" involved in
the fine-tuning translation pair.

We also consider attempting the combination of our proposed linguistically-
driven methods with strong baseline pre-training objective, MASS, which
we call MASS + JASS (or ENSS) in the following sections. To let the pre-
training model know about which language and sub-task (MASS, BMASS,
BRSS, PMASS, HFSS) it should perform, we prepend tags to inputs similar to
the ones used in Johnson et al. [15] (see section 4.3 for details).
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4 Experimental Settings
In this section, we evaluate our pre-training methods on simulated low-
resource scenarios for ASPEC Japanese–English [31], Japanese–Chinese trans-
lation [29] and on realistic low-resource scenarios for Wikipedia Japanese–
Chinese [3, 4], News Commentary Japanese–Russian translation [13].1)

4.1 Pre-training and Fine-tuning for NMT
We first introduce the pre-training and fine-tuning pipeline for NMT. As
shown in Figure 6 below, we first utilize monolingual corpora to pre-train the
initialized sequence-to-sequence model. Subsequently, we use the parallel
corpus of interested languages to fine-tune the pre-trained models. The fine-
tuned model will be the final NMT model. All the experiments in this thesis
will be conducted on the basis of this pre-training and fine-tuning pipeline
for NMT.

Figure 6: Pre-training and fine-tuning for NMT. “L1" and “L2" means two lan-
guages involved in the translation task. “S2S" denotes sequence-to-sequence.

4.2 Datasets
We use the monolingual data for pre-training and the parallel data for fine-
tuning. Refer to Table 1 for an overview.

1) Japanese and Russian are individually resource-rich languages but Ja-Ru can be regarded
as a low-resource language pair because of the limited amount of the parallel data.
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Language Dataset Size

Mono
Ja Common Crawl 22M
Zh Common Crawl 22M
En Common Crawl 22M
En News Crawl 22M
Ru News Crawl 22M

Parallel

Ja-En ASPEC-JE 1M
Ja-Zh ASPEC-JC 670k
Ja-Zh Wikipedia 258k
Ja-Ru JaRuNC 12k
Ja-En JaRuNC 42k
Ru-En JaRuNC 84k

Table 1: Overview of data. “Size" denotes the number of the monolingual
sentences or parallel sentences.

Monolingual data: For pre-training, we use monolingual data of 22M lines
each for Japanese, English, Russian, and Chinese, randomly sub-sampled
from Common Crawl and News crawl1) mentioned in the official WMT mono-
lingual training data.2) For pre-training on Japanese–English and Japanese–
Russian, given that these three languages have different scripts and thus
have few common words, the pre-training objectives for each language will
relatively work separately even though they are performed jointly for two lan-
guages. However, for the pre-training on Japanese and Chinese, they share
more characters, which indicates that the monolingual pre-training tasks will
be run in a pseudo cross-lingual manner. Thus, we also expect to see whether
such pre-training will benefit the fine-tuning more.
Parallel Data: We use scientific abstracts domain ASPEC parallel corpus

1) The pre-training will be much more effective if the domains of the pre-training and
fine-tuning dataset overlap more. [39]

2) http://www.statmt.org/wmt19/translation-task.html
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for training Japanese–English and Japanese–Chinese models and the news
commentary domain JaRuNC parallel corpus for training Japanese–Russian
models. For Japanese–Chinese fine-tuning, we also try the Wikipedia dataset
which is a real low-resource scenario. For ASPEC, We use the official train,
development and test splits provided by WAT 2019.1)2) For Wikipedia, we use
the dataset released by Kyoto University.3)

4.3 Pre-processing
We tokenize the monolingual data by using Moses tokenizer for English and
Russian4), Jumanpp for Japanese5), and jieba for Chinese6). We get the bun-
setsu information by using KNP7) and obtain the HPSG parsing results by
using enju8). Sentences over 175 tokens are removed. For each language
pair, we built a joint vocabulary with 60,000 sub-word units via byte-pair en-
coding (BPE) [43] on the concatenated monolingual corpora involved during
pre-training.9) As we do multi-task pre-training, each sentence is prepended
with a task token [MASS], [BMASS], [BRSS], [PMASS], or [HFSS] and a
language token [Ja], [En], [Ru], or [Zh]. This ensures that the model learns
to distinguish between different pre-training objectives and languages. This
token can be used when monolingual pre-training is conducted jointly by
multiple languages and multiple tasks.

1) http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html\#task.html
2) For ASPEC Japanese–English, we use the first 1M parallel sentences. Parallel sentences

for different fine-tuning size settings are randomly sampled from selected 1M dataset.
3) http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?Wikipedia\%20Chinese-Japanese\

%20Parallel\%20Corpus
4) https://github.com/moses-smt/mosesdecoder
5) https://github.com/ku-nlp/jumanpp
6) https://github.com/fxsjy/jieba
7) https://github.com/ku-nlp/pyknp
8) https://mynlp.is.s.u-tokyo.ac.jp/enju/
9) Specifically, 30,000 BPE merge operations will lead to a joint vocabulary with the size

around 60,000 for Japanese–Chinese, while 40,000 BPE merge operations is set for other
language pairs.
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4.4 Training and Evaluation Details
In our experiments we use the open source OpenNMT [17] implementation
of the Transformer [49] NMT model.1) The hyperparameters are set to the
Transformer-big setting in OpenNMT. In particular our model has a 6-layer
encoder and decoder, a hidden size of 1024, a feed-forward hidden layer size of
4096, batch-size of 2048, dropout rate of 0.3 and 16 attention heads. An ADAM
optimizer with a learning-rate of 10−4 is used both for pre-training and fine-
tuning. All the pre-training tasks are run till convergence on 4 TITAN V100
GPU cards and fine-tuning uses only 1 GPU. It takes around 2 days for each
pre-training run. Mixed precision training [26] is used for both pre-training
and fine-tuning. For multi-task pre-training, data is randomly shuffled so
that even in each mini-batch, different pre-training objectives will appear,
corresponding to a real joint pre-training. Pre-training tasks are evaluated
using perplexity and the checkpoint with the lowest pre-training perplexity
is selected for fine-tuning. We use BLEU [32] for automatic evaluation, and
adequacy and fluency for human evaluation. We do early stopping using 1-
gram accuracy and perplexity on development-set. We evaluate the statistical
significance of our BLEU scores by bootstrap resampling [18].

4.5 Baselines
Besides MASS, we also define two pre-training baselines here to compare with
our proposed methods. They are named as MultiMASS (Multi-span based
MAsked Sequence to Sequence) and Deshuffling. Moreover, the joint training
with MASS and Deshuffling is set as the multi-task pre-training baseline. All
the baselines are as following:
MASS. Using the same settings as in Song et al. [46].
MultiMASS. MultiMASS is a baseline method added to help demonstrate
the effectiveness of masking specific syntactic units like bunsetsu or phrase
spans within a sentence which we propose as BMASS and PMASS.

As shown in Figure 7, MultiMASS predicts several randomly masked

1) https://github.com/OpenNMT/OpenNMT-py
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Figure 7: An example of source and target for MultiMASS with the meaning
“LoveLive is made of three projects."

Figure 8: An example of source and target for Deshuffling with the meaning
“LoveLive is made of three projects."

token spans within a sentence, which differs from the single masked span in
MASS, masked busetsu spans in BMASS, several phrase spans in PMASS.P
and the single phrase span in PMASS.S.
Deshuffling. Deshuffling denotes the pre-training task of random shuffling
based sentence reconstruction, which is also one of the crucial pre-training
tasks in BART [21]. We perform this pre-training task as another baseline
to confirm the effectiveness of reordering syntactic units in BRSS and the
reordering driven by head finalization of HFSS. A pre-training example is
shown in Figure 8.
Multi-task Baseline. Multi-task baseline is the combination of respective
best baseline methods from masked language model and reordering pre-
training. Thus, here multi-task baseline consists of MASS1) and Deshuffling.
It is formulated by:

L(X ) = Lmass(X ) + Ldeshuffling(X ) (4)

where X represents the monolingual corpora.

4.6 Pre-trained Models
We pre-train our NMT models by leveraging the monolingual data of the
source and target languages. For Japanese we can use MASS, BMASS, or
1) MASS outperforms MultiMASS, so we use MASS rather than MultiMASS. (See 5.1)
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# Pre-trained Model Details

Main baseline
1 MASS Using the same settings as in Song et al. (2019).

Proposed methods for Japanese

2 BMASS
Similar to MASS, we mask half of the number of the

bunsetsus during pre-training.

3 BRSS
We separately pre-train on SVO–SOV (BRSS.F)

as well as SOV–SVO (BRSS.R) models.
4 JASS Multi-task training of BMASS and BRSS.

Combinations of proposed methods with MASS
5 MASS+BMASS Multi-task training of MASS and BMASS.
6 MASS+BRSS Multi-task training of MASS and BRSS.
7 MASS+BMASS+BRSS Multi-task training of BMASS, BRSS and MASS.

Other baselines for Japanese

8 MultiMASS (Ja)
Based on MASS, several random token spans are

masked rather than one consecutive span.
9 Deshuffling (Ja) Random shuffling based original sentence reconstruction.
10 MASS+Deshuffling (Ja) Multi-task pre-training baseline for Japanese.

Proposed methods for English

11 PMASS
Similar to MASS, we mask an entire phrase span based on
head-driven phrase structure grammar. We respectively
perform the experiments for PMASS.P and PMASS.S.

12 HFSS We train SOV(head finalized)–SVO(original) models for English.
13 ENSS Multi-task training of MASS and HFSS.

Other baselines for English

14 MultiMASS (En)
Based on MASS, several random token spans are

masked rather than one consecutive span.
15 Deshuffling (En) Random shuffling based original sentence reconstruction.
16 MASS+Deshuffling (En) Multi-task pre-training baseline for English.

Combination of proposed methods for English and Japanese
17 JASS+ENSS Multi-task training of JASS and ENSS

Baseline for #17
18 MASS+Deshuffling Multi-task pre-training baseline for JASS+ENSS

Table 2: Settings of pre-trained models.
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BRSS, while for English we can use MASS, PMASS, or HFSS. For Russian
and Chinese, we only use MASS. Following Imankulova et al. [13], we ex-
perimented with multilingual models for Japanese–Russian translation. For
this purpose, we pre-train for all three languages with MASS and/or JASS
as applicable to each language.1) In particular we pre-train different types
of models in Table 2. Note that we use MASS for ENSS because PMASS
underperforms MASS by a significant margin (see 5.1).

4.7 Fine-tuned NMT Models
We fine-tune to improve Japanese-English, English-Japanese, Japanese-Chinese,
Chinese-Japanese, Japanese-Russian, Russian-Japanese translation. We train
the following NMT models:
1. Ja–En and En–Ja: Japanese to English and English to Japanese models

using from 3k to 50k parallel sentences randomly sampled from ASPEC
for fine-tuning.

2. Ja–Zh and Zh–Ja: Japanese to Chinese and Chinese to Japanese models
using from 3k to 50k parallel sentences randomly sampled from ASPEC
and Wikipedia respectively for fine-tuning.

3. Ja–Ru and Ru–Ja: Japanese to Russian and Russian to Japanese models.
We fine-tune on the Japanese–Russian data for unidirectional models
(labelled as “UNI"). Following Imankulova et al. [13], we also trained
multilingual models (labelled as “M2M") by fine-tuning on the combina-
tion of all news commentary data in Table 1.

We compare these models with baselines which are supervised NMT
models on the same data settings but without pre-training. In addition,
fine-tuning results under the high-resource scenarios (with over 50k parallel
sentences) are given and discussed in Appendix A.1.

1) ENSS will be combined in this multilingual pre-training in future work.
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5 Results and Analyses
Tables 3, 4, 5, 6, and 7 contain the NMT BLEU results of our proposed methods
for Japanese–English, Japanese–Chinese, and Japanese–Russian translation
on a variety of translation domains respectively. Afterwards, we will pro-
vide in-deep analysis for translation quality in terms of adequacy by using
LASER [1], human evaluation scores, specific cases for the real low-resource
scenario of Wikipedia Ja-Zh. Last but not the least, we conduct an investi-
gation on the pre-training accuracy to analyze how different the pre-trained
models are and how they complement with each other.

5.1 NMT Results
In Tables 3, 4, 7, where we simulate several low resource settings for Japanese–
English and Japanese–Chinese translation on ASPEC with different pre-
training datasets, and in Table 5 and 6, where we use a realistic low-resource
setting for Wikipedia Japanese–Chinese and JaRuNC Japanese–Russian trans-
lation, we can observe that all settings using pre-training outperform those
without pre-training (#0), indicating the importance of pre-training. The re-
sults also show that JASS (#4) and ENSS (#13) are generally better than MASS
(#1).

Specifically, for Japanese–English translation, BMASS (#2) is comparable
to MASS; BRSS (#3 & #3(R)) and their combination, JASS (#5), are signifi-
cantly better than MASS. However, as shown in Table 4 and 5, results on
two parallel corpora on different domains for Japanese–Chinese show much
more significantly better results by using our proposed BMASS and BRSS. We
see that only few settings on Japanese-to-Chinese of BRSS yield lower BLEU
results than MASS, while other settings by using proposed methods give
better results than MASS by significant margins. Although, MASS is better
than BMASS for Japanese–English translation, the reverse can be observed
for Japanese–Chinese and also on Japanese–Russian translation, especially
when multilingual data (M2M) is used for fine-tuning. This indicates that
the effects of the proposed linguistically-driven techniques might correlate to
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# Model
Ja-En En-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines
0 w/o pre-training 0.8 2.1 3.5 16.1 1.1 2.7 5.1 19.4
1 MASS 8.8 13.8 17.2 21.2 9.1 16.0 20.6 25.0

Proposed methods for Japanese
2 BMASS 8.9 13.9 17.4 21.8 8.7 15.9 20.1 25.4
3 BRSS 8.8 14.9† 18.1† 22.0† 10.0† 17.3† 21.0 26.0†

3 (R) BRSS.R 8.2 14.3† 17.7† 21.7† 10.0† 17.2† 20.5 25.7†

4 JASS 10.6† 15.7† 18.9† 22.3† 11.5† 17.7† 21.6† 26.5†

Combinations of proposed methods with MASS
5 1 + 2 9.2 14.8† 17.7† 21.7† 9.7† 16.6† 20.9 25.9†

6 1 + 3 10.9† 15.9† 18.3† 22.2† 11.0† 17.7† 21.7† 26.8†

7 1 + 4 10.5† 15.5† 18.5† 22.0† 11.5† 17.9† 21.7† 26.4†

Other Baselines for Japanese
8 MultiMASS (Ja) 7.1 12.1 15.1 20.5 6.9 13.0 17.7 24.1
9 Deshuffling (Ja) 6.8 12.7 16.6 21.0 7.8 14.7 19.3 24.9
10 1 + 9 8.2 13.3 17.0 21.4 8.3 15.5 19.5 25.4

Proposed methods for English
11 PMASS.P 6.8 12.1 15.9 20.7 5.5 13.5 17.8 24.5
11* PMASS.S 6.5 12.3 16.2 21.2 6.2 13.5 18.2 24.6
12 HFSS 10.5† 16.3† 18.9† 22.6† 9.8† 17.8† 21.7† 26.8†

13 ENSS 11.2† 16.7† 19.0† 22.1† 11.7† 18.7† 22.5† 27.0†

Other baselines for English
14 MultiMASS (En) 6.9 12.0 15.2 20.1 7.0 12.8 17.5 23.8
15 Deshuffling (En) 6.6 12.5 15.9 20.9 6.8 14.1 19.2 24.7
16 1 + 15 7.7 13.2 16.7 21.0 8.6 15.7 20.4 25.6

Combination of methods for Japanese and English
17 4 + 13 10.9† 16.4† 18.7† 22.3† 11.9† 18.4† 22.0† 26.5†

18 10 + 16 (baseline) 7.2 12.6 16.4 20.9 8.4 14.8 19.1 25.5

Table 3: BLEU scores for simulated low/high-resource settings for Japanese–
English ASPEC translation using 3k to 50k parallel sentences for fine-tuning.
Pre-trained models used for fine-tuning are numbered as per their description
in section 4.6. Results better than MASS with statistical significance p < 0.05

are marked with †. Bold denotes the top-three scores.
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# Model
Ja-Zh Zh-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines
0 w/o pre-training 0.7 3.4 11.5 21.0 1.9 4.5 16.0 28.2
1 MASS 15.7 20.3 22.4 24.7 19.4 25.9 29.4 32.9

Proposed methods
2 BMASS 16.7† 21.1† 23.0† 25.3† 20.9† 27.2† 30.2† 33.7†

3 BRSS 15.6 21.1† 22.6 24.9 20.7† 26.8† 30.0† 33.3†

4 JASS 17.1† 22.2† 23.2† 25.2† 21.6† 27.5† 30.4† 33.6†

Combinations of proposed methods with MASS
7 1 + 4 17.0† 21.7† 23.1† 25.4† 21.8† 27.6† 30.2† 33.4†

Other baselines
8 MultiMASS 14.5 20.5 22.3 24.7 19.6 25.7 29.8 33.2
9 Deshuffling 14.1 19.5 21.6 24.3 18.4 25.0 28.7 32.8
10 1 + 9 15.0 20.2 22.1 25.0 18.9 25.9 29.3 33.1

Table 4: BLEU scores for simulated low-resource settings for Japanese–
Chinese ASPEC translation using 3k to 50k parallel sentences for fine-tuning.
Results better than MASS with statistical significance p < 0.05 are marked
with †.

specific translation directions and domains.
As shown in Table 3, our proposed methods of leveraging linguistic

knowledge for English obtain significant higher BLEU results when we per-
form the reordering pre-training task, HFSS (#12). However, the proposed
linguistically-driven masked language model PMASS.P (#11) and PMASS.S
(#11*) just yield comparable results to several other baseline methods like Mul-
tiMASS (#14) and Deshuffling (#15). This demonstrates that syntactical span
based masked language model may merely work on head-final languages like
Japanese. Considering the weak performance of PMASS, we combine HFSS
with MASS for ENSS. The multi-task pre-trained ENSS gives highest results
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# Model
Ja-Zh Zh-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines
0 w/o pre-training 0.9 2.9 2.9 6.0 1.6 2.9 3.9 6.5
1 MASS 7.7 15.4 18.3 23.4 9.6 17.6 23.3 27.1

Proposed methods
2 BMASS 10.8† 15.7 20.1† 24.5† 16.2† 19.4† 25.4† 30.0†

3 BRSS 11.6† 16.2† 20.0† 24.6† 15.7† 21.6† 25.0† 28.3†

4 JASS 12.0† 17.0† 20.1† 25.0† 16.6† 21.2† 26.5† 29.2†

Combinations of proposed methods with MASS
7 1 + 4 11.8† 16.8† 20.1† 24.6† 16.6† 22.3† 25.5† 29.6†

Other baselines
8 MultiMASS 8.2 13.8 18.6 21.5 10.7 17.3 22.0 26.4
9 Deshuffling 9.3 14.2 18.7 22.7 12.4 18.4 23.2 27.4
10 1 + 9 8.7 13.8 19.4 23.2 14.3 18.8 24.8 27.8

Table 5: BLEU scores for simulated low-resource settings for Japanese–
Chinese Wikipedia translation using 3k to 50k parallel sentences for fine-
tuning. Results better than MASS with statistical significance p < 0.05 are
marked with †.

almost on all the low-resource settings.
However, in Table 3, when performing a universal linguistically-driven

pre-training simultaneously for Japanese and English (#17), we did not obtain
further significant BLEU improvements. This can be attributed to that NMT
may depend more on specific linguistic information on single language side,
and the joint pre-training does not allow the linguistic knowledge transfer
across languages between dissimilar languages.

Besides the main baseline MASS, we also conduct several other sequence-
to-sequence pre-training baselines: MultiMASS (#8 & #14) and Deshuffling
(#9 & #15) and their multi-task combinations (#10, #16 and #18) respectively
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# Model
UNI M2M

Ja-Ru Ru-Ja Ja-Ru Ru-Ja

0 w/o pre-training 0.50 0.72 1.70 4.49
1 MASS 0.96 2.84 3.08 6.54

2 BMASS 0.97 2.77 3.57† 7.12†

3 BRSS 0.85 2.36 3.11 6.98†

4 JASS 1.20 3.08 3.36 7.92†

7 1 + 4 1.07 3.45† 3.02 7.06†

Table 6: BLEU scores for news commentary Japanese–Russian translation.
We evaluate uni-directonal (“UNI") as well as multilingual models (“M2M").
Results better than MASS with statistical significance p < 0.05 are marked
with †.

for Japanese and English. As shown in Table 3, 4, 5, we observe that the pro-
posed masked style pre-training task – BMASS and reordering pre-training
tasks – BRSS & HFSS outperform these baselines by significant margins,
which indicates that linguistically-driven methods should be superior to self-
supervised pre-training without leveraging linguistic features.

As shown by Table 3, BRSS-F (English/Russian ordering to Japanese or-
dering) gave slightly better results than BRSS-R (vice-versa) and thus we only
experimented with BRSS-F for remaining experiments. We suppose the rea-
son is that training the decoder with the original sentence is more important
than training the encoder with it. In other words, forcing the decoder to gener-
ate a natural sentence leads to better initialized decoder for NMT. Meanwhile,
HFSS is performed by the analogous manner for the same reason.

As mentioned above, JASS gives the best results when we only consider
the linguistically-driven methods for Japanese. After combining the proposed
methods for Japanese with MASS respectively (#5∼#7 in Table 3, 7), no signif-
icant improvements can be observed. This demonstrates that linguistic-aware
methods can substitute the linguistic-agnostic ones.
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# Model
Ja-En En-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines
0 w/o pre-training 1.3 2.6 9.5 17.6 1.5 3.7 11.5 21.0
1 MASS 9.9 15.2 18.7 22.3 11.0 18.1 21.6 28.0

Proposed methods
2 BMASS 8.5 14.3 18.6 22.3 9.8 17.3 21.1 27.1

3.1 BRSS.F 8.6 14.8 18.4 22.1 10.3 17.7 21.6 27.5
3.2 BRSS.R 7.4 13.7 17.3 21.8 9.8 16.9 20.8 26.3
4 JASS 10.1 15.6† 19.1† 22.9† 11.4 18.5† 22.2† 27.3

Combinations of proposed methods with MASS
5 1 + 2 8.7 14.2 18.2 22.2 10.0 17.4 21.5 27.2
6 1 + 3.1 10.8† 16.0† 19.0 22.7 12.0† 19.0† 22.3† 27.3
7 1 + 4 10.7† 16.1† 19.3† 23.2† 12.6† 19.2† 23.0† 28.1

Other baselines
8 MultiMASS 5.2 10.8 14.7 20.6 6.1 12.9 17.8 25.0
9 Deshuffling 5.6 10.9 15.2 21.1 6.9 14.0 18.9 25.1

Table 7: BLEU scores for simulated low-resource settings for Japanese–
English ASPEC translation using 3k to 50k parallel sentences for fine-tuning
(News Crawl for English used for pre-training). Results better than MASS
with statistical significance p < 0.05 are marked with †.

Moreover, as shown by Table 4 and 5, we observe that on ASPEC domain,
JASS improves up to 2.2 BLEU scores while on Wikipedia domain, JASS gives
up to 7.0 BLEU improvements. On one hand, this demonstrates the promising
performance of our proposed methods. On the other hand, this indicates
that the more pre-training domain overlaps with fine-tuning domain, the
more improvements linguitically-driven pre-training methods will produce.
Furthermore, by seeing Table 3 and 7, we can find that BLEU scores with New
Crawl (Table 7) are better than those on another setting, which shows that pre-
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training with high-quality monolingual dataset leads to superior fine-tuning
results.

In Table 6, the improvement contributed by bilingual pre-training is lim-
ited on JaRuNC. When we use multilingual (M2M) fine-tuning, the trans-
lation quality is significantly better than unidirectional fine-tuning but the
BLEU scores are all less than 10. As such, it is difficult to make serious
claims about which pre-training method is the best. Our scores are smaller
than the ones in Imankulova et al. [13] because unlike us, they performed
bilingual pre-training as well as leveraged in-domain monolingual data for
back-translation. Note that Japanese–Russian is a difficult language pair, the
fine-tuning data is small and the news commentary domain is much harder
than the ASPEC and Wikipedia domain. Our future efforts will be directed
towards effective pre-training methods on more difficult fine-tuning domains
in addition to using back-translation.

5.2 Adequacy Evaluation
Reference-free MT evaluation is evaluating the translation system without
using the target reference. Such kinds of evaluation can help circumvent the
noise existing in the references of translation target. After the emergence
of multilingual sentence encoder [1], Yankovskaya et al. [54] proposed us-
ing multilingual sentence embeddings encoded by LASER to implement the
reference-free MT evaluation. More precisely, we first apply LASER to respec-
tively encode the source sentence and the translated sentence, then the cosine
value of those two embeddings is used to evaluate the similarity between the
source and the translation. This cosine value is thus the metric to evaluate
the translation adequacy. There exist two advantages here. One is that target
references are not required as above-mentioned. The other is that every two
translation directions can be compared with each other because of using the
language-agnostic embedding for evaluation.

We report the adequacies in Table 8. First, we observe that methods
with pre-training can yield more semantically correct translations than those
without pre-training. Second, our proposed methods can significantly obtain
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# Model
ASPEC ASPEC Wikipedia

Ja-En En-Ja Ja-Zh Zh-Ja Ja-Zh Zh-Ja

* Reference 80.78 86.10 87.26

0 w/o pre-training 52.59 45.89 69.54 67.08 57.55 56.48

1 MASS 75.63 76.09 85.52 86.32 81.08 78.52

2 BMASS 75.75 76.68 85.42 86.49 80.91 81.36
3 BRSS 78.34 76.66 85.87 86.54 81.71 84.29
4 JASS 80.00 77.63 85.96 86.58 85.39 83.08

Table 8: Adequacy evaluated by LASER embedding based cosine similarity
for ASPEC Japanese–English, Japanese–Chinese, and Wikipedia Japanese–
Chinese translations respectively using 10k sentences for fine-tuning. Refer-
ence is the cosine similarity between the test-sets in two languages.

higher LASER similarity scores than MASS baseline, especially the results on
ASPEC Japanese to English translation and both two directions of Chinese–
Japanese translation on Wikipedia.

5.3 Human Evaluation
Following Nakazawa et al. [30], we performed adequacy and fluency eval-
uation for the Japanese–Chinese translation when 10k Wikipedia parallel
sentences were used for fine-tuning the pre-trained models. We randomly
sampled 100 test set English sentences and blindly evaluated their transla-
tions across various models. We scored each sentence on a scale of 1 to 5,
with 1 being the worst score. The higher the score, the more adequate (mean-
ingful) or fluent (well-formed), the sentence is. The final score we report is
the average of the scores of 100 sentences. We did not look at the references
but only looked at the sources for our evaluation.

In Table 9, we can observe that NMT models even if without pre-training
are capable to generate rather fluent sentences, and the lack of parallel sen-
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# Model
BLEU Adequacy Fluency

Ja-Zh Zh-Ja Ja-Zh Zh-Ja Ja-Zh Zh-Ja

0 w/o pre-training 2.9 2.9 1.22 1.05 3.90 3.99

1 MASS 15.4 17.6 2.72 2.33 4.11 4.09

2 BMASS 15.7 19.4 3.12 2.88 4.34 4.32
3 BRSS 16.2 21.6 3.30 3.35 4.30 4.40
4 JASS 17.0 21.2 3.79 3.44 4.47 4.36

Table 9: Adequacy and fluency of Wikipedia Japanese–Chinese translations
using 10k sentences for fine-tuning.

tences (low-resource scenario) will mainly influence the translation adequacy
(refer to the extremely low adequacy of models without pre-training). On
the other hand, we can see that our proposed BMASS, BRSS, and JASS result
in large improvements in adequacy and moderate improvements in fluency,
for both two translation directions. The better performance of adequacy than
MASS demonstrates the effectiveness of the linguistically-driven pre-training
methods. Moreover, we can see that the results of human evaluation are
almost consistent to those of BLEU.

5.4 Case Study
We conduct case studies on English-to-Japanese translation fine-tuned by 10k
ASPEC parallel sentences and Chinese-to-Japanese translation fine-tuned by
10k Wikipedia parallel sentences to make improvements shown by BLEU
score evaluations visible. As shown in Table 10 and 11, we find that the vanilla
NMT system trained by 10k parallel sentences without pre-training can hardly
implement the translation. With regard to models with pre-training, we ob-
serve that MASS and other baseline models generated several incorrect tokens
in terms of semantics whereas the whole sentence is somehow fluent. How-
ever, our proposed methods can generate sentences with superior adequacy
and fluency, where much less missing keywords are observed.
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Reference–Ja
水の性質の多様性について,まず,水分子同士の間に働く力である水素結合と,そのネットワーク
構造について解説した。

Reference–En
To begin with, various properties of water were explained on hydrogen bond in which the force
works among the water molecules and the network structure.

English to Japanese translation fine-tuned by 10k ASPEC-JE parallel sentences
0 w/o pre-training ここでは,これらのデータを述べ,これらの研究に,これらの研究について解説した。
1 MASS まず,水分子の力を中心とした水素結合について様々な特性を説明した。
2 BMASS まず,水分子とネットワーク構造をもつ水素結合について,様々な性質を説明した。
3 BRSS まず,水分子とネットワーク構造としての力がある水素の性質を説明した。
4 JASS まず,水分子とネットワーク構造を融合させる力で水素結合に関する種々の性質を説明した。
8 MultiMASS(Ja) まず,水分子との間の水素結合について,酸素分子とネットワーク構造を説明した。
9 Deshuffling(Ja) まず,水分子とネットワーク構造について,様々な特性を説明した。
10 Multi-task baseline (Ja) まず,水分子の力とネットワーク構造について水素を中心に,様々な特性を説明した。
11 PMASS まず,水分子とネットワーク構造の相互作用を持つ水素結合について解説した。
12 HFSS まず,水分子とネットワーク構造を持つ力を持つ水素結合について,様々な性質を説明した。

13 ENSS
まず,水中の様々な性質について,水分子とネットワーク構造の中で力を働く水素結合について
説明した。

14 MultiMASS(En) まず,水分子を中心に水素結合の種々の性質を説明した。

15 Deshuffling(En)
まず,水分子とネットワーク構造に関係する水素の様々な特性を説明し,水分子とネットワーク
構造について解説した。

16 Multi-task baseline (En) まず,水分子における力とネットワーク構造に関係する水素結合について種々の性質を説明した。

Table 10: Japanese–English translation examples fine-tuned by 10k ASPEC
parallel sentences.

Reference–Ja 翌嘉永２年（１８４９年）１１月２２日に婚姻し、御廉中様（将軍世子の正室）と称された。

Reference–Zh 翌嘉永２年（１８４９年）１１月２２日成婚，被称作御廉中样（将军世子的正室）。

Chinese to Japanese translation fine-tuned by 10k Wikipedia parallel sentences
0 w/o pre-training 慶長２年（１５８３年）、劉宮将軍となり、幕府の命を率いた。

1 MASS 翌嘉永２年（１８４９年）５月２７日に成婚。

2 BMASS 翌嘉永２年（１８４９年）１１月２３日に結婚。

3 BRSS 翌嘉永２年（１８４９年）１１月２３日に成婚し、御廉の中（将軍世子の正室）と呼ばれる。

4 JASS 翌嘉永２年（１８４９年）１１月２２日成婚し、御廉中様（将軍世子の正室）と称した。

8 MultiMASS 翌嘉永２年（１８４９年）１月２９日に成婚した。

9 Deshuffling 翌嘉永２年（１８４９年）１１月２３日、御廉中の正室（将軍世子の正室）と称された。

10 Multi-task baseline 翌嘉永２年（１８４９年）１１月２２日成婚し、御廉の代わりに義子と呼ばれる。

Table 11: Japanese–Chinese translation examples fine-tuned by 10k Wikipedia
parallel sentences.

5.5 Pre-training Accuracy
Pre-training accuracy is the accuracy of the monolingual pre-training tasks
and it can be an indicator of task complexity and pre-training objective’s
performance. Table 12 shows the component-wise and overall pre-training
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# Model Overall MASS BMASS BRSS

1 MASS 69.66 69.66 - -

2 BMASS 77.88 - 77.88 -
3 BRSS 87.35 - - 87.35
4 JASS 85.61 - 77.49 93.51

5 1 + 2 74.04 70.02 78.09 -
6 1 + 3 77.19 69.89 - 84.34
7 1 + 4 80.61 70.12 77.83 93.58

Table 12: Component-wise and overall pre-training accuracies on ASPEC
Japanese development sentences. Note in particular how BRSS accuracy is
boosted in multi-task settings, while the opposite could have been expected.

accuracies for various models on the ASPEC Japanese development set sen-
tences. Regarding individual component methods, it can be seen that MASS
is the hardest task, given its low accuracy whereas BRSS is the easiest one.
Moreover, the accuracy of MASS and BRSS improves when coupled with
BMASS. Cross-referencing these accuracies with the BLEU scores in Table 3,
we can see that an increase in BLEU scores almost has no relationship with
the pre-training accuracy here. However, BMASS seems to act as an accuracy
improving catalyst for BRSS and MASS which in turn has a positive impact
on the translation quality.

One possible reason for this is that multi-task training of different pre-
training methods helps boost the performance of individual methods. This is
in accordance with several past works on multi-task training for NMT [8, 21,
23, 39]. As such, we recommend that such an analysis of multi-objective pre-
training methods can help isolate the importance of individual pre-training
objectives. Nevertheless, our analysis shows that the components of JASS,
BMASS and BRSS, are certainly responsible for improving translation quality
for Japanese-involved language pairs. The analysis of this section is not appli-
cable to English-side because PMASS did not yield significant improvements
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against MASS which can be attributed to the absence of specific syntactic unit
like bunsetsu in English.
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6 Conclusion
In this thesis, we proposed the JASS and ENSS, pre-training methods that
leverage information from syntactic structures of sentences and novel alterna-
tives to language-agnostic pre-training schemes such as MASS for NMT. Our
work leveraged abundant monolingual data and syntactic analysis so that the
pre-training phase becomes aware of specific language structures. Our exper-
iments on ASPEC Japanese–English, Japanese–Chinese, Wikipedia Japanese–
Chinese and News Commentary Japanese–Russian translation showed that
JASS and ENSS outperform MASS in most low-resource settings. Further-
more, we showed that JASS and ENSS can completely substitute the cor-
responding language-agnostic pre-training tasks and enhance the perfor-
mance for low-resource NMT. This demonstrates the importance of inject-
ing language-specific information into the pre-training objective as well as
the benefit of multi-task pre-training with diverse objectives. Our adequacy
evaluation through LASER, human evaluation, and case study also showed
that our methods result in a significant improvement in terms of adequacy
and fluency of translations. The analysis of pre-training accuracy reveals the
complementary nature of individual tasks within JASS.

Our future work will focus on implementing linguistic-aware multilingual
pre-training massively by more languages for robuster pre-trained models.
We will also work on determining the impact of multi-task pre-training using
a combination of a wide variety of pre-training approaches that focus on
different aspects of language structure. We also note that Raffel et al. [39]
has recently shown that many NLP tasks such as text understanding could
be reformulated as text-to-text tasks. This broadens a lot the domain of
usefulness of sequence-to-sequence pre-training tasks such as ours, and we
will be interested in evaluating our approach on a wider range of NLP tasks.
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Appendix

A.1 Results in Middle/High-resource Scenarios

Figure A.1: BLEU results overview of middle/high-resource scenarios on AS-
PEC Japanese–English, Japanese–Chinese and Wikipedia Japanese–Chinese
translations.

As shown in Figure A.1, we here report a BLEU result overview in
middle/high-resource scenarios. The fine-tuning is performed by over 200k
parallel sentences on respective language pair and domain. By comparing
with models without pre-training, we find that pre-training can still con-
tribute some improvements whereas much less than those in low-resource
scenarios. Second, we observe that most pre-training methods obtained com-
parable BLEU results regardless of whether they are linguistically-driven
methods or not. This indicates that in middle/high-resource scenarios, our
proposed methods might be limited, which also means that linguistically-
driven supervisions can be utilized to compensate the lack of the parallel
sentences.
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