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Introduction

* Subword segmentation methods’? rely on statistical information
* We propose:
» BERTSeg, a BERT-based neural method that relys on semantic
information of the target word
» A regularization method for BERTSeg
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i languages i ' language +s !
' watching ' watch +ing i
| stressful ' BERTSeg 1 stress + ful :
. wavelength 1 wave +length
' unknown i ' un + know +n i
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He leaned closef as well, watching.

Especially watching my son.
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c Machine Translation

* Higher BLEU scores on low-resource to high-resource datasets
compared with BPE*, VOLT?, DPE3, BPE-dropout?*

ALT IWSLT1S WMTI16 WMTIS
Asian Langs—En Vi—»En Ro—En Fi—En

w/o Regularization

BPE! 19.76 27.09 32.54 17.45
VOLT? 19.91 27.16 31.89 17.25
DPE? 19.88 27.40 29.95 16.14
BERTSeg 20.71 27.80 32.33 17.54
With Regularization

BPE-dropout® 23.04 28.76 33.59 18.50
BERTSeg-Regularization 24.68 30.09 33.82 18.46

3) speed

 BERTSeg requires about
400 seconds on large corpus

ALT WMT16 Ro-En

° ° ° . ° BPEI 4 13
during training, WhICh.IS VOLT2 960 1,747
much faster than previous DPE3 3 477 68.334
neural method DPE3 BERTSeg 58 391

e Segmentation Examples

* High generalization ablity on rare or unseen words compared

with BPE!
BERTSeg BPE
Frequent words Rare words Unseen words
official/s officials inter/face/s inter/f/aces stable/d st/ab/led
edit/ion edition sea/side se/as/ide save/r/s sa/vers
use/d used ab/mormal/ly ~ ab/n/orm/ally M/illion/s Mill/ions
farm/er/s far/mers b/y/stand/er by/st/ander Free/way Fre/ew/ay
contribute/d contrib/uted dis/comfort disc/om/fort M/i/s/behavior M/is/be/hav/ior
normal/ly norm/ally un/warrant/ed  un/w/arr/anted  m/o/u/r/n/ed m/our/ned
seven/th sevent/h in/definitely ind/ef/in/itely M/a/d/a/m/e Mad/ame

 Subword segmentation with regularization

» Global best N segmentations
are obtained through
Dynamic Programming
algorithm in O(N/ogN*T?)

BERTSeg-Regularization
Segmentation

represent/ed represented
represent/e/d | re/presented
re/presented | re/present/e/d

Conclusion

We proposed BERTSeg, an unsupervised neural subword
segmenter for NMT, together with a regularization algorithm

MT results showed significant improvement over frequency-based
and neural network-based methods

The training is efficient even compared with non-neural methods

» A multilingual segmenter using embeddings from BERT, mBERT,
or character-level mBERT
» Remove the dependency on the BPE vocabulary
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