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What we are going to study/review

e Functions of one variable
e Functions of several variables
e Derivatives and Gradient

* Finding the minimum of a function with Gradient Descent



What we are going to study/review

fR->R
* Given a function of one variable, find fx) = X2 — y
practically the value for which it is
minimum arg min f(x)

e a.k.a “univariate function”
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* You should have seen how to do that
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for simple functions in High School
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What we are going to study/review

f:R* > R
fo,y) =@+ +1
e Given a function of several arg min f(x, y)
variables, find the value for X,y
which it IS minimum
A

e a.k.a “multivariate function” £ |
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A Peek in the Future

Why we do it?

e Actually, almost all algorithms of supervised machine learning consist In
finding the minimum of a function of several variable




A Peek in the Future

* In supervised learning, we

Supervised Learning

Learn by
minimizing

usually have: this

Loss

* AMODEL: a “parameterized”
function that takes input and
produce output

Correct
A Loss: A function that Output
compute how different the Examples

model output is from the nput = MIODEL > Model

correct output Output
Parameters

Examples of input and
correct output



A Peek in the Future

Supervised Learning

This Is the same

* In supervised learning, we setting whatever n',',f,fle,’,fg
usually have: the TYPE OF Error=0.6 .~ this
EXAMPLES
. Loss
* A MODEL.: a “parameterized”
function that takes input and
produce output [4, 10, 6, 8]
Correct
* A Loss: A function that Output 14, 9, 5, 8]
compute how different the Examples
model output is from the Nput ey MJODEL Model
correct output Output
[2, 5, 3, 4] Parameters

 Examples of input and

correct output
Learning to multiply numbers by two




A Peek in the Future

Supervised Learning

This Is the same

* |n supervised learning, we setting whatever nl*)-li?r::z?r{g
usually have: the TYPE OF Error=1 .~ this
EXAMPLES
. Loss
* A MODEL.: a “parameterized”
function that takes input and
produce output “«CAT”
Correct
A Loss: A function that Output
compute how different the Examples “DOG”
model output is from the NPt ey MIODEL e é\)llcidelt
correct output utpu

 Examples of input and
correct output

Learning to recognize images




A Peek in the Future

Supervised Learning

* In supervised learning, we
usually have:

* A MODEL.: a “parameterized”
function that takes input and
produce output

« A Loss: A function that
compute how different the
model output is from the
correct output

 Examples of input and
correct output

This Is the same

setting whatever n’;;?; ':_Zl’?’{,’g
the TYPE OF Error=0.8 / this
EXAMPLES
Loss
“Where are you?”
Correct
Output “Where are he?”
Examples
S o f Parameters
t [ & ‘(—E i 3'7'3‘0

Learning to translate




A Peek in the Future

Supervised Learning

_ , This is the same Learn by
* In supervised learning, we setting whatever the minimizing
usually have: type of MODEL Error=06 .~  this
. Loss
* A MODEL.: a “parameterized”
function that takes input and
produce output [4, 10, 6, 8]
Correct
A Loss: A function that Output
055. A TUNEHON tha LINEAR REGRESSION 14,9, 5, 8]
compute how different the Examples
model output is from the NPt ey MIODEL e é\)llcidelt
correct output utpd

[2, 5, 3, 4] Parameters

Examples of input and
correct output

Learning to multiply numbers by two with a Linear Regression Model




A Peek in the Future

Supervised Learning

_ , This is the same Learn by
* In supervised learning, we setting whatever the minimizing
usually have: type of MODEL Error=06 .~  this
Loss
* A MODEL.: a “parameterized”
function that takes input and
produce output [4, 10, 6, 8]
Correct
A Loss: A function that Output NEURAL NETWORK 14, 9, 5, 8]
compute how different the Examples
model output is from the Nput ey MJODEL Model
correct output Output

[2, 5, 3, 4] Parameters

Examples of input and
correct output

Learning to multiply numbers by two with a Neural Network




Terminology

 Because minimizing a loss is the main way for “learning”, for us, the
following expressions have all the same meaning:

 Minimizing the Loss of a Model for some examples
 Training a Model on some examples

 Having a Model learn from some examples



Supervised Learning

Learn by
minimizing

/ this

: Loss
* We will go back to these

concepts later In the

semester

Correct

Output
e For now, let us focus on

methods for minimizing a
function

Examples

Model
Output

Input ——  MODEL ——t

Parameters




Minimizing a function of one
variable



Functions of one variable

 Hopefully, you are all familiar with the concept of “functions of one
variable”

 Terminology: also called “Univariate function”
 Take a single number as input, give a single number as output
fR—->R J(=1)=2

flr) = x? = x ) =9
£0.1) = — 0.99




Minimizing a function of one variable

* Given a function of one variable f(x), what is the input number x that gives
the smallest output number?

» We note this number arg min f(x)
X

 Whatis argminf(x) for fx) = X243 7

e« Whatis argminf(x) for f(x) =x ?

X

e What s arg IIllIlf(X) for f(.X) — .X2 —Xx 7

X



Minimizing a function of one variable

ollev.com/fabiencromie576

* Given a function of one variable f(x), what is the input number x that gives
the smallest output number?

» We note this number arg min f(x)
X

 Whatis argminf(x) for fx) = X243 7

» Whatis argminf(x) for  f(x) =x [

X

e What s arg IIllIlf(X) for f()C) — X2 —Xx 7

X


http://pollev.com/fabincromie576

The “High School” view of minimization

* Let us start by recalling what we learn in high school



The “High School” view of minimization

20.0 -

» |et us start by recalling what we learn in high school o

To minimize f(x):

0.0 1

1. Compute first derivative f’(x)

f"R->R
3. Compute second derivative f”(x) f(X) 2

5. Find x0 such that f(x0) = 0

6. If f’(x0) > 0 then x0 is a local minimum of f

Note: It iIs not how we will

minimize functions in practice




The “High School” view of minimization

e |Let us start by recalling what we learn in high school L
To minimize f(x): s
1. Compute first derivative f’(x) f S
R =R
3. Compute second derivative f”(x) f(x) _ x2 -
5. Find x0 such that f(x0) =0 f’(X) —2%—1 —» X() — () 5

6. If f’(x0) > 0 then x0 is a local minimum of f

fiw) =2

Note: It iIs not how we will

minimize functions in practice




L ocal minimum, local maximum

 Note that the condition on the second derivative is important to
distinguish minimums from maximum




L ocal minimum, local maximum

 Note that the condition on the second derivative is important to
distinguish minimums from maximum

Derivative is 0 at these points

T

[
7




L ocal minimum, local maximum

* Note that the condition on the second derivative is important to distinguish minimums from maximum

* Also, the solution could be only a local minimum

3.0 1
2.5 |
2.0 |
15 -
10 A
0.5 |

0.0 - Local Minimum

» 3 a : ;
Global Minimum



Absence of minimum

e A function may have no minimum

5 -
4 -
3 -

N

3 4




Absence of minimum

e |t is even possible for derivative to be 0 even if the function has no
Minimum

Derivative is 0 at these points

| 7
N //
53 N

- N




et us take 15 minutes to review
derivatives

Don’t worry. It is a quick
review. But in the real world, we
rarely have to compute
derivatives

Derivatives! Oh no!!

o
o /////////,mn.mmm\\\\\\\ g
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Computers do that
for us.

Still. It is good to
have some basics.



Let us take 15 minutes to review derivatives

* Does everybody remember how to compute derivatives?
* Do not panic if you don't.

* In practice, we will have functions that can compute the derivatives
automatically for us

 Still, you should understand at least how they work
» we Will review briefly the basics



Different ways of considering derivatives

 \We can see derivatives in different ways.

* In high school, derivatives are often introduced as a set of rules that let
you compute a derivative from a function.

e | et us review that first.



Computing derivatives

Exercise:

f(x) £(x) sin(x) + log(x)

sin(x) cOS(X) 2 X lOg (x T 1)
R sin(2x)

CcOS(X) -sin(x)
_______________________________________________________________________ ex

x" - px"! —
1 ................................. X

log(x) E -
. o

...............................................................................................................................................
...............................................................................................................................................

g(x) + h(x) g’(x) + h’(x) Linearity |

...............................................................................................................................................

a - h(X) o - h’(x) Linearity Il



Different ways of considering derivatives

 \We can see derivatives in different ways.

* In high school, derivatives are often introduced as a set of rules that let
you compute a derivative from a function.

e | et us review that first.

 The other way to see a derivative is as a local linear approximation of a
function




What is a derivative?

* One definition: the coefficient of the best linear approximation of a function at x
* If his small: fx+h)~f(x)+h-f(x)
« Example:

e if we know that [log(2.3) = 0.8329009...

 How much is log(2.4)7?

* Supposing we cannot compute a log again
e 24=23+0.1 i
« We can approximate: /08(2.4) = log(2.3) +0.1 X 53

. . 1
* Which gives: l0g(2.3) + 0.1 X —— = 0.876387...

* The true value is: log(2.4) = 0.875468...



Different ways of considering derivatives

* \We can see derivatives in different ways.

* |In high school, derivatives are often introduced as a set of rules that let
you compute a derivative from a function.

e | et us review that first.

 The other way to see a derivative is as a local linear approximation of a
function

 Equivalently, the derivative is the slope of the tangent of the function at a
point




What is a tangent?

 The line that best approximate a line at a point




What is a derivative?

* The derivative is also the coefficient of the tangent to the graph
of the function.

f(x)=x"2-4*x+5 f(x)=2"x-4

f(0) = -4 T S




Tangent and derivative
J(x+h) = f(x) + h - f(x)

| -




Derivative and minimum

* Intuitively, this shows you why the derivative should be zero at a minimum

2 -
1 -
0 - -

20 -15 -10 -05 00 05 10 15 20




Derivative and minimum

 Let us look again at how a derivative can help us find a minimum



Derivative and minimum

e The derivative tells us in which direction move to find the minimum

B

x=20
f(0)y=-1

-20 -15 -10 -05

0.0

05 10 15 20

AN

X = —
f(=1) = -3

If derivative at x is negative, minimum is on the right
(we need to increase x to get closer to the minimum)

If derivative at x is positive, minimum is on the left

1 o

0 o

(we need to decrease x to get closer to the minimum):

If derivative at x is zero, x should be a minimum
(not necessarily in theory, but in our cases, it will be)

-20 -15 -10 -05

0.0

0.5 10 15 20

6

x=0.5
£(0.5) = Q

-20 -15 -10 -05

0.0 0.5 10 15 20

x=1
J)=1

e

-20 -15 -10 -05

0.0

0.5

10 15 20




Gradient Descent Algorithm

* This suggests some procedure for finding a minimum:
e Start at any x (eg. x = 0)
 Compute f’(x)
e If f’(x) > 0: Decrease x a bit
e If f’(X) < O: Increase x a bit

 Repeat



Gradient Descent Algorithm

* This suggests some procedure for finding a minimum:;

e Start at any x (eg. x = 0)
 Compute f’(x)
e If f’(x) > 0: Decrease x a bit
e If f’(X) < O: Increase x a bit

 Repeat

—

In practice, we do this:

x:=x—1Ir-f(x)

Ir: learning rate

Should be a positive value
If too large: no convergence
If too small: very slow convergence



Initialize x

|

> Compute f'(x)

'

X Is good Yes
enough? I

lNo

Update x:
x:=x—1Ir--f(x)

Done

Ir: learning rate
Should be a positive value
If too large: no convergence
If too small: very slow convergence

fx) =x*—x

fx)=2x—-1
arg min f(x) = 0.5

Gradient Descent algorithm

Ir=0.2

X=0

x=0.493
£(x) = -0.014

STOP?



Gradient Descent algorithm

* Let us try to see a bit more how it works in practice using Jupiter
Notebooks

e https://colab.research.google.com/drive/1Pdn4laPkbt-
DU3w2EdidFigdXAg63QJu

+ bit.ly/2KDOOTP



https://colab.research.google.com/drive/1Pdn4laPkbt-DU3w2EdidFiqdXAq63QJu
https://colab.research.google.com/drive/1Pdn4laPkbt-DU3w2EdidFiqdXAq63QJu
http://bit.ly/2KDOoTP

Gradient Descent Algorithm

. Gra_dli:)elnt descent works well even when we have functions of millions of
variable

* This is why it is so useful for Machine Learning and Neural Networks
» Other methods will not be practical in such settings
» Convergence will depend on the choice of a good learning rate

* In experiments, a good deal of time is often spent finding an optimal
learning rate

* Too large learning rate: no convergence (ie. the system learn nothing)

* Too small learning rate: slow convergence (ie. the system takes a
long time to learn)



Minimizing a function of
several variables



Functions of several variables

e A function of several variables is just that: a function which has several
variables

0,0,0) =0

fiR >R ;21,2,3; _ 7
f,y,2) =@ -y +z7"—z f(—=1,2,2) =11

£0,1,1) = 2

1(2,2,0) =7

o Like before, we want to find its minimum:

arg min f(x, y, z) = (0,0,0.5)

X,Y5<



Parameterized functions

* By fixing one of the variable, we can obtain a function with one less
variable

Function of 3 variables: f(x,y,7) = (x — y)2 + 272 —7

'

Fixing z:
9 7 = )

'

fx,y.2)=(x—y)*+4-2

Function of 2 variables:  f(x,y) = (x — V)? + 2



Parameterized functions

* By fixing one of the variable, we can obtain a function with one less
variable

Function of 3 variables: f(x,y,7) = (x — y)2 + 272 —7

'

y=72

'

f(X,Z,Z) — (X o 2)2 + Zz — <

FiXing y:

Function of 2 variables: f (x, Z) — (x — 2)2 + Z2 — <



Parameterized functions

* By fixing one of the variable, we can obtain a function with one less
variable

Function of 3 variables: f(x,y,7) = (x — y)2 + 272 —7
Fixing y and z: y=2 z=3

f(x23)=x—-2)"+9 -3

Function of 1 variable: f (x) = (x — 2)2 + 6



Parameterized functions

* Therefore, in this case, variables y and z can be used to describe a “family” of functions.

* We say they parameterize the

Function of 3 variables: f(x,y,7) = (x — y)2 +z72—7

. 9 — 3 For each value of y and z,
Fixing y and z: Y = <= we have one function of

¢ one variable

f(x,2,3) = (x = 2)* + 9;/

Function of 1 variable: f(x) = (x — 2)2 + 6



Parameterized functions

* Therefore, in this case, variables y and z can be used to describe a “family” of functions
* In such a case, we will say that f is a function parameterized by y and z

 And we note the parameters separately, as subscripts

Function of 3 variables: fy Z()C) = (x — y)2 1 Z2 — <

B B l _ 3 For each value of y and z,
Fixing y and z: Yy = 2 L = we have one function of

¢ one variable

fis(x) =(x=2)"+9-3
fr3(0) =(x—=2)"+6 A/fo,o(x) = x?

foo(x) = x*+2

Function of 1 variable:



Partial derivatives

What is the equivalent of our “high school” derivatives when we have
several variables”?

One part of the answer is partial derivatives

Partial derivatives are computed by choosing one variable and fixing the
others

In other words, we see the function of several variables as a
parameterized function of one variable




Partial derivatives

What is the equivalent of our “high school” derivatives when we have several variables?
One part of the answer is partial derivatives

Partial derivatives are computed by choosing one variable and fixing the others

In other words, we see the function of several variables as a parameterized function of
one variable

Indeed, if we choose vy, and fix x and z, we can see f(X, y, z) as a function of one variable
and compute its derivative

[y, ) =@ -y +z77 -z

L P ey s,
o Y gy 0T oz T



Partial derivatives

f(xayaz) — (X —Y)z +Zz — <
/ l N:ther variables

f0=0=y+27—z  fMW=@-0+-z [,Q=0-y+77 -2

l l Compute derivative l

fy %) = 2(x = y) fi () =20y = x) fi,(2) =271



Partial derivatives

f(xayaz) — (X —Y)z +Zz — <
/ l N:ther variables

f0=0=y+27—z  fMN=@-»+-z [,Q=0-y+77 -z

l l Compute derivative l

Jy%) = 2(x = y) fo ) =20y = x) fi,(2) =271
In practice, we use this notation for partial derivatives:
0 0 0
_f=2(X—Y) —f=2(y—x) —f=22—1

ox 0y dy



Computing the partial derivatives

fe,y,2) =@ -y +z7"—z

of of of
0X oy 07



Partial derivatives

 Exercise: Compute the partial derivatives

fx,y,2) = xyz — 2% — y*

f(x,y,2) = e = log(z)



Partial derivatives

 Exercise: Compute the partial derivatives

fx,y,2) = xyz — 2° — y*

Choice A: Choice B:
of o
— =7 =x—2z" -
0x ’ 0x y
o o
= xz7—2 — Ny —
oy Y Oy =Y — 4y Z
0 0
—f=xy—22 f—z—2z—y2

07 07



Partial derivatives

 Exercise: Compute the partial derivatives

fx,y,2) = e = log(z)
Choice A: Choice B:
of N of
o pxty — =" —log(z
ox ox g2)
0 0
—f — 'Y _f = e — log(z)
0y 0y
g __ 1 & _ ey _ L

—_— —=c

07 Z 07 Z



Vectors

What are vectors?

You probably have used vectors in Physics classes to represent force and speed

* 3-dimensional vectors: [2.3, 4.5, -1]

In Machine Learning, we also use them a lot

Except that they can have more than 3 dimensions

* 5-dimensional vector: [-1, 3, 4.1 ,5.2, 4]

e We often note the set of all n-dimensional vectors R

(12.14.1,—-1,—- 1] e R



Vectors (Continued)

 For now, we only need to know the following about vectors:
e A n-dimensional Vector is a list of n numbers

 \We can add 2 vectors (if they have the same dimension)
12.1,3.4,1.1,3.2]+[—-1,2.1,3.1, - 2] =[1.1,5.5,4.2,1.2]
2.1,3.4] +[-1,2.13.1,-2] = X

 \We can multiply a vector by a number

0.5x%x[2,3,—1,-2]=1[1,1.5,—1.5,—1]



Vectors(Continued)

* We will usually denote a vector by a letter with an arrow on It: 7

—
 \We denote the ith component of X by X

e If X =[1,2.2,—14]

* Then we have xo=1, X1=2.2, Xo=-1, X3=4



Vectors: Exercise

x =[1,5,-2,0.5]

v = [2.2.10,10]
7z =[3, —3,0]
e Dimensionsof X, Vy,Z ?

e Values of X1, y2, Zo, Yo?

—

 Compute: X +y
X +05x7y
V+7Z



Vectors and Multivariate functions

* For now, we have represented the variables of a multivariate function with the letters x, y, z as
in: _ 2 2
" ey, ) ==Y+ 27—

* |n practice, we can have any number of variables. So it is more convenient to use:

* Xo(Instead of x) , x1 (instead of y), X2 (instead of z), X3 .. Xn (if we need more than 3

variables) ) )
f(xO, xl, X2) — (XO — xl) + X2 — X2
 We can also use a vectorial notation to represent all of the variables as one vector variable:

—

X = [Xg, X1, %] (X)) = (xg — x;)* + x22 - X,

* S0, keep in mind that the 3 following expressions actually refer to the same function:
fo,y,2) = (x =y’ +27 -2
f(x, X1, %) = (X9 — X)) + X5 — X,

f(X) = (xg — x)* + x5 — x,



Gradient

 The partial derivatives become the component of a vector we call the
gradient

of of of
rad - f(x,y,7) = |[—,—,—
grad - f(x,y, 2) [ax 5 o
 Forexample: f(x,y,2) = (x —y)2 +7°—7

‘ grad - f(x,y,z) = [2(x = y),2(y — x),2z — 1]



Gradient

(LI
grad - f(x,y,2) = [=~, 5 o

* In this case, the function has 3 variables. Therefore the gradient is a vector
of size 3

» |f the gradient has n variables, it is a vector of size n

 More precisely, the gradient of f is itself a function that return a vector

f:R"> R grad - f: R" - R"

f(x19x29 .« o ,xn) grad .f(xl’XZ’ e "xl’l) — [gl’ * e ’gn]



Interpreting the gradient

3D plot
e At a given point, the gradient is the direction for A
which the value of the function increase fastest [
* Therefore, in general, it points in the direction [ o0
opposite to the minimum s

fx,y) =4(x = 2)* +4(y + 1)* = 0.1xy
grad - f(x,v) = [8(x —2) — 0.1y,8(y + 1) — 0.1x]

grad - (0,0) = [—16,16]
grad - f(2,— 1) =[0.1, — 0.2]




Gradient Descent

 Because we know that the gradient point in a direction opposite to the
minimum, we can use the same idea as in the case of one variable

One variable: Multiple variables:

x:=x—1Ir-f(x) X=X —1Ir-grad- f(¥X)



Gradient Descent algorithm

f(X) = (g — x)* + x5 — x,

BYe —>
nitialize X X =[x, Xp5 - - X, ] grad - (%) = [2(xy — x,).20x, — 0).2%, — 1]
[r =0.2
| - of of
" Compute grad f(x) gl"dd f(x ) — [a—, c .. E]
| *0 & X = (0,1,0)
grad - f(x) =[-2,2, — 1]
Yes x should be close to the
lgrad(x)| < err . minimurm
x =(0.4,0.6,0.2)
No grad - f(X) = [-0.4.0.4, — 0.6]
U date?
p = _,
= (0.41,0.43,0.51
X :=x —=Ir-grad- f(¥X) x = (0 )

grad - f(x) = [—0.04,0.04,0.01]



Let us check gradient descent in practice with some notebook

On google colab: http://bit.ly/2vertE;

(or full url: https://colab.research.google.com/drive/
16MvnlYOTH8HTEIDCgRoWLZ0OqzGPu4np8 )



https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8
https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8
https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8

What is the equivalent of second derivative for

multivariate functions?

of  9of o
It is the Hessian Matrix: o2 oxdy  oxog
o°f 0% 0*f
oxay 0y? 0y0z
But thankfully, we will not need to use it | 9°f 0*f of
0x07 0y0z 072

« But for your information, this would be the equivalent of the “High School”
minimization when we have several variables:

To minimize f(x, y, 2):
1. Compute gradient of f(x, y , 2)
2. Compute hessian of f(x)
3. Find X, y, z such that grad f(x,y,z) = 0
4. If hessian of f(x,y,z) is definite positive then
(X,y,z) is a local minimum of f



Gradient Descent Algorithm

 You can see that, in the case of the gardient descent, the algorithm is the
same for univariate functions and multivariate functions

e |t is a simple algorithm, but it scales very well
* There exists many variations of it;
 Gradient Descent with momentum

» Stochastic Gradient Descent

 Adagrad, Adadelta, Adam, ...



Gradient Descent with Momentum

 Compute a “gradient with momentum” at each iteration:
gm, = 0.6grad - (x) + 0.4gm,_,

—>
Update X :
_)

—_
X :=x —Ir-gm



Stochastic Gradient Descent

 What happens if the gradient is noisy?

 That is, we can only compute a value that is equal to the true gradient “on
average”?

* A bit like If you are drunk and trying to get home



Stochastic Gradient Descent

What happens if the gradient is noisy?
That is, we can only compute a value that is equal to the true gradient “on average”?
* A Dbit like if you are drunk and trying to get home

It turns out It works.
[r

V(+ 1)

Very interesting because a noisy gradient can be million times faster to compute
than a "“true” gradient

 But you have to decrease your learning rate over time to stabilize [r =

* Convergence will be slower



Optimization libraries

* You can also minimize a function by using a specialized library
|t gives you access to more sophisticated minimization algorithms

 However these more sophisticated algorithms do not scale as well as Gradient
Descent

 Which is one Gradient Descent and its variants are still the main tool for large
scale Machine Learning (In particular, Deep Learning)

In [103]: scipy.optimize.minimize(f numpy, np.array([0,0]), jac=grad f numpy, method="L-BFGS-B")

Out[103]: fun: 0.1969057665260197
hess inv: <2x2 LbfgsInvHessProduct with dtype=float64>
jac: array([-3.88578059e-16, 2.77555756e-17])
message: b'CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL'
nfev: 5
nit: 4
status: 0

success: True
X: array([ 1.9878106 , -0.97515237])



