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What we are going to study/review

• Functions of one variable


• Functions of several variables


• Derivatives and Gradient


• Finding the minimum of a function with Gradient Descent



What we are going to study/review

• Given a function of one variable, find 
practically the value for which it is 
minimum


• a.k.a “univariate function”


• You should have seen how to do that 
for simple functions in High School

f(x) = x2 − x
f : ℝ → ℝ

arg min
x

f(x)

x = 0.5
f(x) = − 0.25



What we are going to study/review

• Given a function of several 
variables, find the value for 
which it is minimum


• a.k.a “multivariate function”

f : ℝ2 → ℝ
f(x, y) = (x + y)2 + 1
arg min

x,y
f(x, y)



Why we do it?

• Actually, almost all algorithms of supervised machine learning consist in 
finding the minimum of a function of several variable

A Peek in the Future



Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this
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Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this

[4, 10, 6, 8]

[4, 9, 5, 8]

Error=0.6

[2, 5, 3, 4]

Learning to multiply numbers by two

This is the same 
setting whatever 

the TYPE OF 
EXAMPLES
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Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this

“CAT”

“DOG”

Error=1

Learning to recognize images

This is the same 
setting whatever 

the TYPE OF 
EXAMPLES
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Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this

“Where are you?”

“Where are he?”

Error=0.8

This is the same 
setting whatever 

the TYPE OF 
EXAMPLES

どこに居ますか。

Learning to translate
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Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this

[4, 10, 6, 8]

[4, 9, 5, 8]

Error=0.6

This is the same 
setting whatever the 

type of MODEL

[2, 5, 3, 4]

Learning to multiply numbers by two with a Linear Regression  Model

LINEAR REGRESSION
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Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this

[4, 10, 6, 8]

[4, 9, 5, 8]

Error=0.6

This is the same 
setting whatever the 

type of MODEL

[2, 5, 3, 4]

Learning to multiply numbers by two with a Neural Network

NEURAL NETWORK

A Peek in the Future



Terminology

• Because minimizing a loss is the main way for “learning”, for us, the 
following expressions have all the same meaning:


• Minimizing the Loss of a Model for some examples


• Training a Model on some examples


• Having a Model learn from some examples



Supervised Learning

• We will go back to these 
concepts later in the 
semester


• For now, let us focus on 
methods for minimizing a 
function

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this



Minimizing a function of one 
variable



Functions of one variable

• Hopefully, you are all familiar with the concept of “functions of one 
variable”


• Terminology: also called “Univariate function”


• Take a single number as input, give a single number as output

f(x) = x2 − x
f : ℝ → ℝ f(−1) = 2

f(0) = 0
f(0.1) = − 0.99



Minimizing a function of one variable

• Given a function of one variable f(x), what is the input number x that gives 
the smallest output number?


• We note this number 


• What is                               for                                  ?


• What is                               for                                  ?


• What is                               for                                  ?

arg min
x

f(x)

arg min
x

f(x) f(x) = x2 + 3
arg min

x
f(x)

arg min
x

f(x)

f(x) = x

f(x) = x2 − x



Minimizing a function of one variable

• Given a function of one variable f(x), what is the input number x that gives 
the smallest output number?


• We note this number 


• What is                               for                                  ?


• What is                               for                                  ?


• What is                               for                                  ?

arg min
x

f(x)

arg min
x

f(x) f(x) = x2 + 3
arg min

x
f(x)

arg min
x

f(x)

f(x) = x

f(x) = x2 − x

pollev.com/fabiencromie576

http://pollev.com/fabincromie576


The “High School” view of minimization
• Let us start by recalling what we learn in high school



The “High School” view of minimization
• Let us start by recalling what we learn in high school

To minimize f(x): 

1. Compute first derivative f’(x) 

3. Compute second derivative f’’(x) 

5. Find x0 such that f’(x0) = 0 

6. If f’’(x0) > 0 then x0 is a local minimum of f

f(x) = x2 − x
f : ℝ → ℝ

Note: It is not how we will 
minimize functions in practice



The “High School” view of minimization
• Let us start by recalling what we learn in high school

To minimize f(x): 

1. Compute first derivative f’(x) 

3. Compute second derivative f’’(x) 

5. Find x0 such that f’(x0) = 0 

6. If f’’(x0) > 0 then x0 is a local minimum of f

f(x) = x2 − x
f : ℝ → ℝ

f′�(x) = 2x − 1

f′�′�(x) = 2

x0 = 0.5

Note: It is not how we will 
minimize functions in practice



Local minimum, local maximum
• Note that the condition on the second derivative is important to 

distinguish minimums from maximum



Local minimum, local maximum
• Note that the condition on the second derivative is important to 

distinguish minimums from maximum
Derivative is 0 at these points



Local minimum, local maximum
• Note that the condition on the second derivative is important to distinguish minimums from maximum


• Also, the solution could be only a local minimum

Local Minimum

Global Minimum



Absence of minimum

• A function may have no minimum



Absence of minimum
• It is even possible for derivative to be 0 even if the function has no 

minimum Derivative is 0 at these points



Let us take 15 minutes to review  
derivatives

https://www.maxpixel.net/Fear-Horror-Panic-Comic-Fright-Retro-Face-Man-1296118

Derivatives! Oh no!!

Don’t worry. It is a quick 
review. But in the real world, we 

rarely have to compute 
derivatives

Computers do that 
for us.

Still. It is good to 
have some basics.



Let us take 15 minutes to review  derivatives

• Does everybody remember how to compute derivatives? 
• Do not panic if you don’t.  

• In practice, we will have functions that can compute the derivatives 
automatically for us 

• Still, you should understand at least how they work 
• we will review briefly the basics



Different ways of considering derivatives

• We can see derivatives in different ways.


• In high school, derivatives are often introduced as a set of rules that let 
you compute a derivative from a function.


• Let us review that first.



Computing derivatives
f(x) f’(x)

sin(x) cos(x)

cos(x) -sin(x)

log(x)

xn nxn−1

ex ex

1
x

g(h(x)) h′�(x) × g′�(h(x))

g(x) × h(x) g′�(x) × h(x) + g(x) × h′�(x)

g′�(x) + h′�(x)g(x) + h(x)

α ⋅ h(x) α ⋅ h′�(x)

Composition rule

Leibniz rule

Linearity I

Linearity II

sin(2x)
2 × log(x + 1)

sin(x) + log(x)

ex

x

Exercise:



Different ways of considering derivatives

• We can see derivatives in different ways.


• In high school, derivatives are often introduced as a set of rules that let 
you compute a derivative from a function.


• Let us review that first.


• The other way to see a derivative is as a local linear approximation of a 
function



What is a derivative?
• One definition: the coefficient of the best linear approximation of a function at x 
• If h is small:  
• Example:  

• if we know that  
• How much is            ? 

• Supposing we cannot compute a log again 
• 2.4 = 2.3 + 0.1 
• We can approximate: 

• Which gives: 

• The true value is: log(2.4) = 0.875468...

f(x + h) ≈ f(x) + h ⋅ f′�(x)

log(2.3) = 0.832909...
log(2.4)

log(2.4) ≈ log(2.3) + 0.1 ×
1

2.3

log(2.3) + 0.1 ×
1

2.3
= 0.876387...



Different ways of considering derivatives

• We can see derivatives in different ways.


• In high school, derivatives are often introduced as a set of rules that let 
you compute a derivative from a function.


• Let us review that first.


• The other way to see a derivative is as a local linear approximation of a 
function


• Equivalently, the derivative is the slope of the tangent of the function at a 
point



What is a tangent?
• The line that best approximate a line at a point



What is a derivative?

• The derivative is also the coefficient of the tangent to the graph 
of the function.

f(x) = x^2 -4*x + 5 f’(x) = 2*x -4

f’(0) = -4



Tangent and derivative
f(x + h) ≈ f(x) + h ⋅ f′�(x)



Derivative and minimum
• Intuitively, this shows you why the derivative should be zero at a minimum



Derivative and minimum

• Let us look again at how a derivative can help us find a minimum



Derivative and minimum
• The derivative tells us in which direction move to find the minimum

x = 0
f′�(0) = − 1

x = − 1
f′�(−1) = − 3

x = 0.5

f′�(1) = 1
x = 1

f′�(0.5) = 0If derivative at x is negative, minimum is on the right  
(we need to increase x to get closer to the minimum)

If derivative at x is positive, minimum is on the left  
(we need to decrease x to get closer to the minimum)

If derivative at x is zero, x should be a minimum  
(not necessarily in theory, but in our cases, it will be)



Gradient Descent Algorithm
• This suggests some procedure for finding a minimum:


• Start at any x  (eg. x = 0)


• Compute f’(x)


• If f’(x) > 0:  Decrease x a bit


• If f’(x) < 0: Increase x a bit


• Repeat 



Gradient Descent Algorithm
• This suggests some procedure for finding a minimum:


• Start at any x  (eg. x = 0)


• Compute f’(x)


• If f’(x) > 0:  Decrease x a bit


• If f’(x) < 0: Increase x a bit


• Repeat 

x := x − lr ⋅ f′�(x)
In practice, we do this:

lr: learning rate

Should be a positive value


If too large: no convergence

If too small: very slow convergence 



Gradient Descent algorithm
Initialize x

Compute f’(x)

Update x: 
x := x − lr ⋅ f′�(x)

x is good 
enough? Done

lr: learning rate

Should be a positive value


If too large: no convergence

If too small: very slow convergence 

Yes

No

lr = 0.2


x = 0

f’(x) = -1


x=0.2

f’(x) = -0.6


x=0.32

f’(x) = -0.36


x = 0.392

…

…

…

…


x=0.493

f’(x) = -0.014


STOP?

f(x) = x2 − x

arg min
x

f(x) = 0.5
f′�(x) = 2x − 1



Gradient Descent algorithm

• Let us try to see a bit more how it works in practice using Jupiter 
Notebooks


• https://colab.research.google.com/drive/1Pdn4laPkbt-
DU3w2EdidFiqdXAq63QJu


• bit.ly/2KDOoTP

https://colab.research.google.com/drive/1Pdn4laPkbt-DU3w2EdidFiqdXAq63QJu
https://colab.research.google.com/drive/1Pdn4laPkbt-DU3w2EdidFiqdXAq63QJu
http://bit.ly/2KDOoTP


Gradient Descent Algorithm

• Gradient descent works well even when we have functions of millions of 
variable 
• This is why it is so useful for Machine Learning and Neural Networks 
• Other methods will not be practical in such settings 

• Convergence will depend on the choice of a good learning rate 
• In experiments, a good deal of time is often spent finding an optimal 

learning rate 
• Too large learning rate: no convergence (ie. the system learn nothing) 
• Too small learning rate: slow convergence (ie. the system takes a 

long time to learn)



Minimizing a function of 
several variables



Functions of several variables
• A function of several variables is just that: a function which has several 

variables


• Like before, we want to find its minimum:

f : ℝ3 → ℝ
f(x, y, z) = (x − y)2 + z2 − z

arg min
x,y,z

f(x, y, z) = (0,0,0.5)

f(0,0,0) = 0
f(1,2,3) = 7
f(−1,2,2) = 11
f(0,1,1) = ?
f(2,2,0) = ?



Parameterized functions
• By fixing one of the variable, we can obtain a function with one less 

variable

f(x, y, z) = (x − y)2 + z2 − z

z = 2

f(x, y,2) = (x − y)2 + 4 − 2

f(x, y) = (x − y)2 + 2

Function of 3 variables:

Function of 2 variables:

Fixing z:



Parameterized functions
• By fixing one of the variable, we can obtain a function with one less 

variable

f(x, y, z) = (x − y)2 + z2 − z

y = 2

f(x,2,z) = (x − 2)2 + z2 − z

Function of 3 variables:

Function of 2 variables:

Fixing y:

f(x, z) = (x − 2)2 + z2 − z



Parameterized functions
• By fixing one of the variable, we can obtain a function with one less 

variable

f(x, y, z) = (x − y)2 + z2 − z

y = 2

f(x,2,3) = (x − 2)2 + 9 − 3

Function of 3 variables:

Function of 1 variable:

Fixing y and z:

f(x) = (x − 2)2 + 6

z = 3



Parameterized functions
• Therefore, in this case, variables y and z can be used to describe a “family” of functions.


• We say they parameterize the 

f(x, y, z) = (x − y)2 + z2 − z

y = 2

f(x,2,3) = (x − 2)2 + 9 − 3

Function of 3 variables:

Function of 1 variable:

Fixing y and z:

f(x) = (x − 2)2 + 6

z = 3 For each value of y and z, 
we have one function of 

one variable



Parameterized functions
• Therefore, in this case, variables y and z can be used to describe a “family” of functions


• In such a case, we will say that f is a function parameterized by y and z


• And we note the parameters separately, as subscripts

fy,z(x) = (x − y)2 + z2 − z

y = 2

f2,3(x) = (x − 2)2 + 9 − 3

Function of 3 variables:

Function of 1 variable:

Fixing y and z:

f2,3(x) = (x − 2)2 + 6

z = 3 For each value of y and z, 
we have one function of 

one variable

f0,0(x) = x2

f0,2(x) = x2 + 2



Partial derivatives
• What is the equivalent of our “high school” derivatives when we have 

several variables?


• One part of the answer is partial derivatives


• Partial derivatives are computed by choosing one variable and fixing the 
others


• In other words, we see the function of several variables as a 
parameterized function of one variable



Partial derivatives
• What is the equivalent of our “high school” derivatives when we have several variables?


• One part of the answer is partial derivatives


• Partial derivatives are computed by choosing one variable and fixing the others


• In other words, we see the function of several variables as a parameterized function of 
one variable


• Indeed, if we choose y, and fix x and z, we can see f(x, y, z) as a function of one variable 
and compute its derivative


•

f(x, y, z) = (x − y)2 + z2 − z
∂f
∂x

= 2(x − y)
∂f
∂y

= 2(y − x) ∂f
∂z

= 2z − 1



Partial derivatives
f(x, y, z) = (x − y)2 + z2 − z

fy,z(x) = (x − y)2 + z2 − z fx,z(y) = (x − y)2 + z2 − z fx,y(z) = (x − y)2 + z2 − z

f′�y,z(x) = 2(x − y) f′�x,z(y) = 2(y − x) f′�x,y(z) = 2z − 1

Fix other variables

Compute derivative



Partial derivatives
f(x, y, z) = (x − y)2 + z2 − z

fy,z(x) = (x − y)2 + z2 − z fx,z(y) = (x − y)2 + z2 − z fx,y(z) = (x − y)2 + z2 − z

f′�y,z(x) = 2(x − y) f′�x,z(y) = 2(y − x) f′�x,y(z) = 2z − 1

Fix other variables

Compute derivative

∂f
∂x

= 2(x − y)
∂f
∂y

= 2(y − x)
∂f
∂y

= 2z − 1

In practice, we use this notation for partial derivatives:



Computing the partial derivatives
f(x, y, z) = (x − y)2 + z2 − z

∂f
∂x

=
∂f
∂y

= ∂f
∂z

=



Partial derivatives
• Exercise: Compute the partial derivatives

f(x, y, z) = xyz − z2 − y2

f(x, y, z) = ex+y − log(z)



Partial derivatives
• Exercise: Compute the partial derivatives

f(x, y, z) = xyz − z2 − y2

∂f
∂x

= yz

∂f
∂y

= xz − 2y

∂f
∂z

= xy − 2z

∂f
∂x

= x − z2 − y2

∂f
∂y

= y − 2y − z2

∂f
∂z

= z − 2z − y2

Choice A: Choice B:



Partial derivatives
• Exercise: Compute the partial derivatives

∂f
∂x

= ex+y

∂f
∂y

= ex+y

∂f
∂z

= −
1
z

∂f
∂x

= ex+y − log(z)

∂f
∂y

= ex+y − log(z)

∂f
∂z

= ex+y −
1
z

Choice A: Choice B:

f(x, y, z) = ex+y − log(z)



Vectors
• What are vectors?


• You probably have used vectors in Physics classes to represent force and speed


• 3-dimensional vectors: [2.3, 4.5, -1]


• In Machine Learning, we also use them a lot


• Except that they can have more than 3 dimensions


• 5-dimensional vector: [-1, 3, 4.1 ,5.2, 4]


• We often note the set of all n-dimensional vectors ℝn

[1,2.1,4.1, − 1, − 1] ∈ ℝ5



Vectors (Continued)

• For now, we only need to know the following about vectors:


• A n-dimensional Vector is a list of n numbers


• We can add 2 vectors (if they have the same dimension)


• We can multiply a vector by a number 

[2.1,3.4,1.1,3.2] + [−1,2.1,3.1, − 2] = [1.1,5.5,4.2,1.2]

0.5 × [2,3, − 1, − 2] = [1,1.5, − 1.5, − 1]

[2.1,3.4] + [−1,2.1,3.1, − 2] =



Vectors(Continued)

• We will usually denote a vector by a letter with an arrow on it: 


• We denote the ith component of      by xi 


• If 


• Then we have x0=1, x1=2.2, x2=-1, x3=4

⃗x
⃗x

⃗x = [1,2.2, − 1,4]



Vectors: Exercise

• Dimensions of                  ?


• Values of x1, y2, z0, y0?


• Compute:

⃗x = [1,5, − 2,0.5]

⃗y = [2,2,10,10]
⃗z = [3, − 3,0]

⃗x , ⃗y , ⃗z

⃗x + 0.5 × ⃗y
⃗x + ⃗y

⃗y + ⃗z



Vectors and Multivariate functions
• For now, we have represented the variables of a multivariate function with the letters x, y, z as 

in: 


• In practice, we can have any number of variables. So it is more convenient to use: 


• x0 (instead of x) , x1 (instead of y),  x2   (instead of z),  x3 .. xn (if we need more than 3 
variables)


• We can also use a vectorial notation to represent all of the variables as one vector variable:


• So, keep in mind that the 3 following expressions actually refer to the same function:


•

f(x, y, z) = (x − y)2 + z2 − z

f(x0, x1, x2) = (x0 − x1)2 + x2
2 − x2

f( ⃗x ) = (x0 − x1)2 + x2
2 − x2

f(x, y, z) = (x − y)2 + z2 − z

f( ⃗x ) = (x0 − x1)2 + x2
2 − x2

f(x0, x1, x2) = (x0 − x1)2 + x2
2 − x2

⃗x = [x0, x1, x2]



Gradient
• The partial derivatives become the component of a vector we call the 

gradient


• For example:


•

grad ⋅ f(x, y, z) = [
∂f
∂x

,
∂f
∂y

,
∂f
∂z

]

f(x, y, z) = (x − y)2 + z2 − z

grad ⋅ f(x, y, z) = [2(x − y),2(y − x),2z − 1]



Gradient

• In this case, the function has 3 variables. Therefore the gradient is a vector 
of size 3


• If the gradient has n variables, it is a vector of size n


• More precisely, the gradient of f is itself a function that return a vector

grad ⋅ f(x, y, z) = [
∂f
∂x

,
∂f
∂y

,
∂f
∂z

]

f : ℝn → ℝ grad ⋅ f : ℝn → ℝn

f(x1, x2, . . . , xn) grad ⋅ f(x1, x2, . . . , xn) = [g1, . . . , gn]



Interpreting the gradient
• At a given point, the gradient is the direction for 

which the value of the function increase fastest


• Therefore, in general, it points in the direction 
opposite to the minimum

f(x, y) = 4(x − 2)2 + 4(y + 1)2 − 0.1xy
grad ⋅ f(x, y) = [8(x − 2) − 0.1y,8(y + 1) − 0.1x]

Contour Plot

3D plot

grad ⋅ f(0,0) = [−16,16]

grad ⋅ f(2, − 1) = [0.1, − 0.2]



Gradient Descent

• Because we know that the gradient point in a direction opposite to the 
minimum, we can use the same idea as in the case of one variable

x := x − lr ⋅ grad ⋅ f( x )x := x − lr ⋅ f′�(x)
One variable: Multiple variables:



Gradient Descent algorithm
Initialize    

Compute grad f(x)

Update      : 

x := x − lr ⋅ grad ⋅ f( x )

|grad(x)| < err x should be close to the 
minimum 

Yes

No

x = [x0, x1, . . . xn]

grad ⋅ f( x ) = [
∂f
∂x0

, . . .
∂f
∂xn

]

x

x
f( ⃗x ) = (x0 − x1)2 + x2

2 − x2

⃗x = (0,1,0)

grad ⋅ f( ⃗x ) = [2(x0 − x1),2(x1 − x0),2x2 − 1]

grad ⋅ f( ⃗x ) = [−2,2, − 1]

⃗x = (0.4,0.6,0.2)
grad ⋅ f( ⃗x ) = [−0.4,0.4, − 0.6]

lr = 0.2

⃗x = (0.41,0.43,0.51)
grad ⋅ f( ⃗x ) = [−0.04,0.04,0.01]



• Let us check gradient descent in practice with some notebook


• On google colab: http://bit.ly/2vertEi


• (or full url: https://colab.research.google.com/drive/
16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8 )


•

https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8
https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8
https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8


What is the equivalent of second derivative for 
multivariate functions?

• It is the Hessian Matrix:


• But thankfully, we will not need to use it


• But for your information, this would be the equivalent of the “High School” 
minimization when we have several variables:


•

∂2f
∂x2

∂2f
∂y2

∂2f
∂z2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂x∂y

To minimize f(x, y, z): 
1. Compute gradient of f(x, y , z) 
2. Compute hessian of f(x) 
3. Find x, y, z such that grad f(x,y,z) = 0 
4. If hessian of f(x,y,z) is definite positive then 

(x,y,z) is a local minimum of f



Gradient Descent Algorithm
• You can see that, in the case of the gardient descent, the algorithm is the 

same for univariate functions and multivariate functions


• It is a simple algorithm, but it scales very well


• There exists many variations of it:


• Gradient Descent with momentum


• Stochastic Gradient Descent


• Adagrad, Adadelta, Adam, …



Gradient Descent with Momentum

• Compute a “gradient with momentum” at each iteration:


•
gmt = 0.6grad ⋅ f( ⃗x ) + 0.4gmt−1

Update      : 

x := x − lr ⋅ gmt

x



Stochastic Gradient Descent

• What happens if the gradient is noisy?


• That is, we can only compute a value that is equal to the true gradient “on 
average”?


• A bit like if you are drunk and trying to get home



Stochastic Gradient Descent
• What happens if the gradient is noisy?


• That is, we can only compute a value that is equal to the true gradient “on average”?


• A bit like if you are drunk and trying to get home


• It turns out it works.


• But you have to decrease your learning rate over time to stabilize


• Convergence will be slower


• Very interesting because a noisy gradient can be million times faster to compute 
than a “true” gradient

lr =
lr0

(t + 1)



Optimization libraries
• You can also minimize a function by using a specialized library


• It gives you access to more sophisticated minimization algorithms


• However these more sophisticated algorithms do not scale as well as Gradient 
Descent


• Which is one Gradient Descent and its variants are still the main tool for large 
scale Machine Learning (In particular, Deep Learning)


