Mathematical Concepts

Functions, Minimization, Gradient

Fundamentals of Artificial Intelligence Fabien Cromieres Kyoto University

bit.ly/2v6OjgT

What we are going to study/review

- Functions of one variable
- Functions of several variables
- Derivatives and Gradient
- Finding the minimum of a function with Gradient Descent

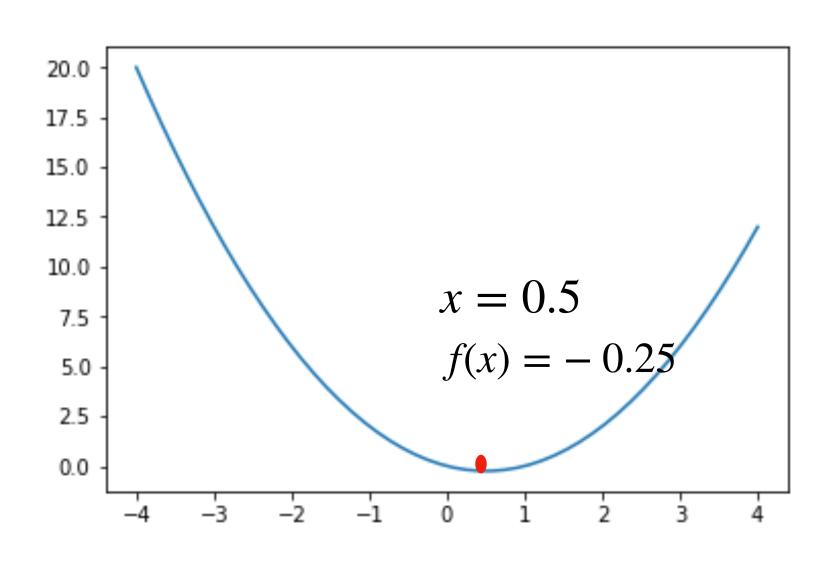
What we are going to study/review

- Given a function of one variable, find practically the value for which it is minimum
 - a.k.a "univariate function"
 - You should have seen how to do that for <u>simple</u> functions in High School

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^2 - x$$

$$\arg \min_{x} f(x)$$



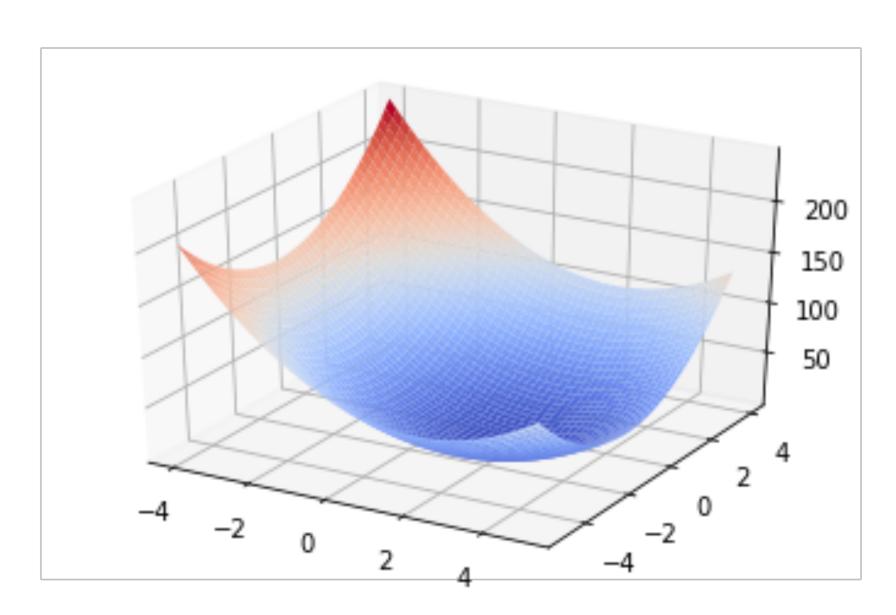
What we are going to study/review

- Given a function of several variables, find the value for which it is minimum
 - a.k.a "multivariate function"

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = (x+y)^2 + 1$$

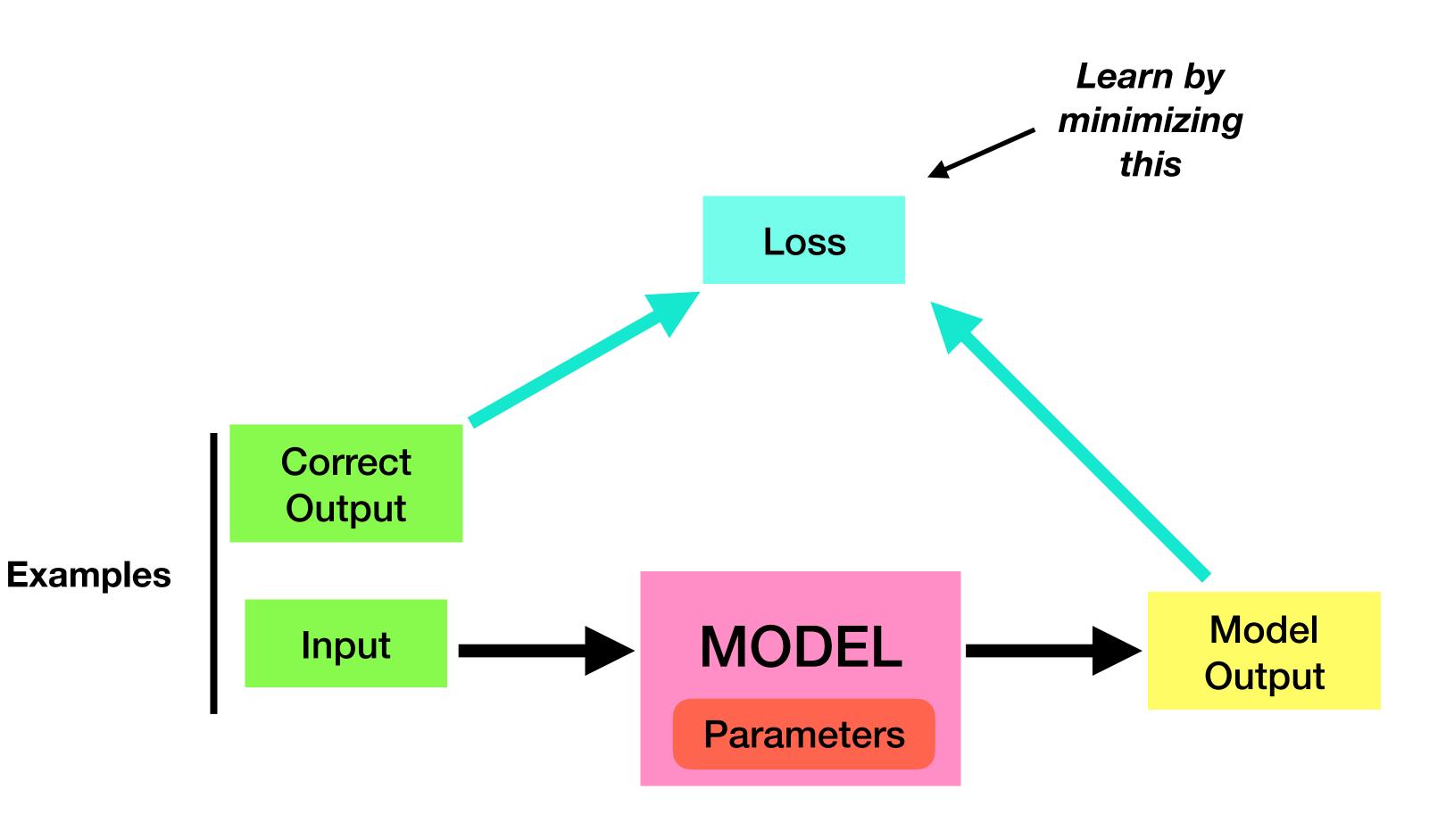
$$\underset{x,y}{\operatorname{arg min}} f(x,y)$$



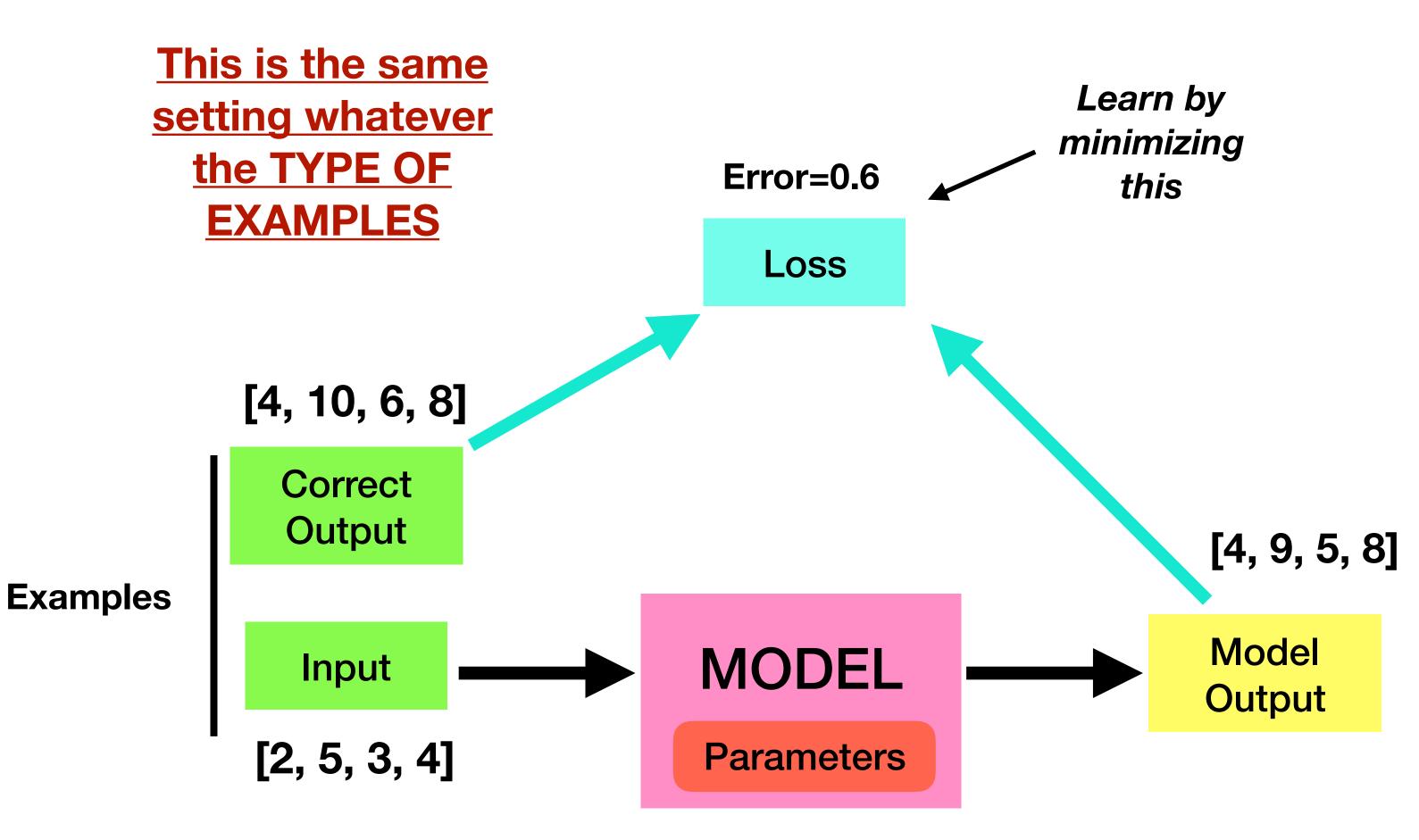
Why we do it?

• Actually, <u>almost all</u> algorithms of <u>supervised machine learning</u> consist in finding the **minimum** of a **function of several variable**

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output

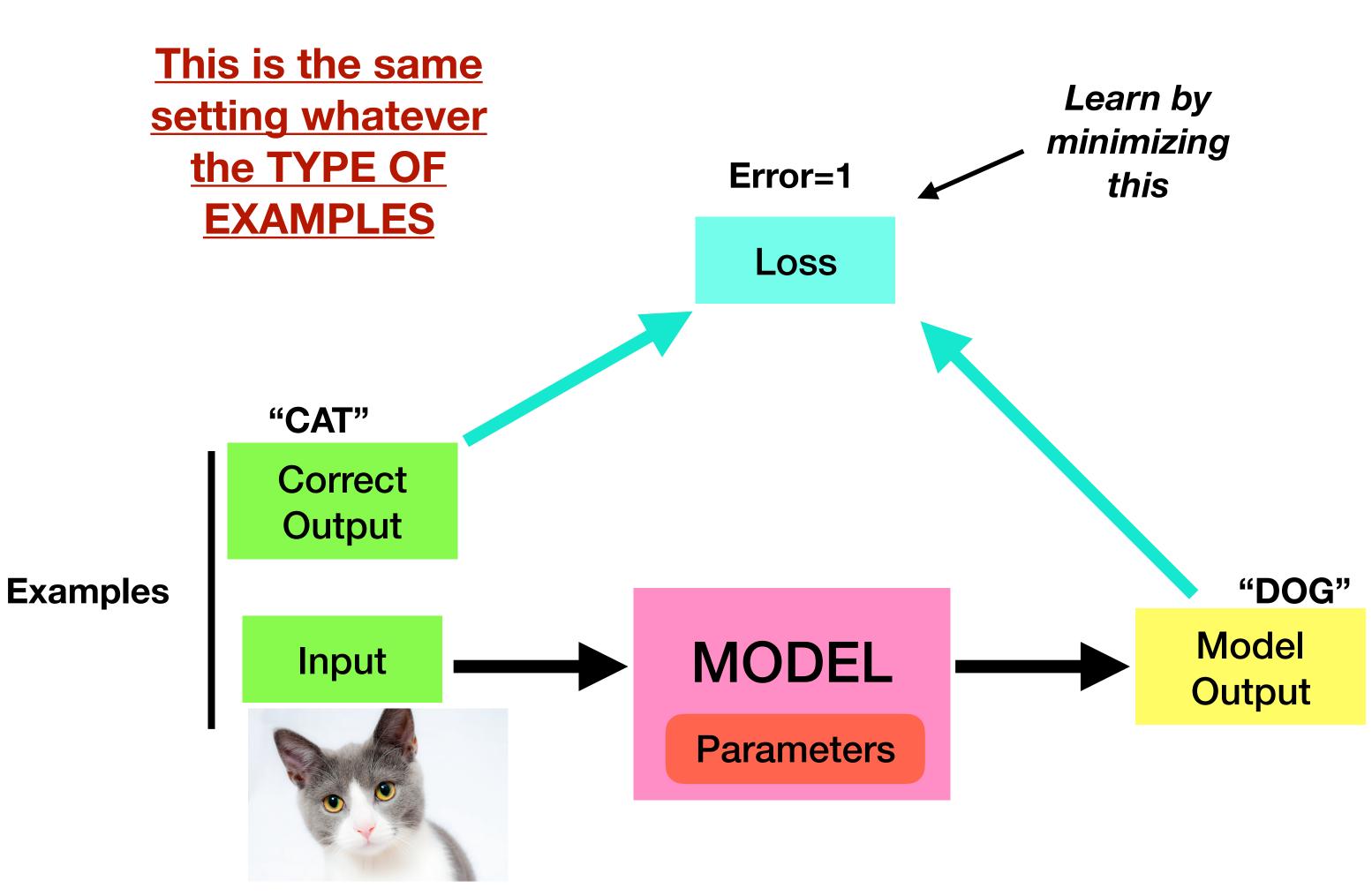


- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



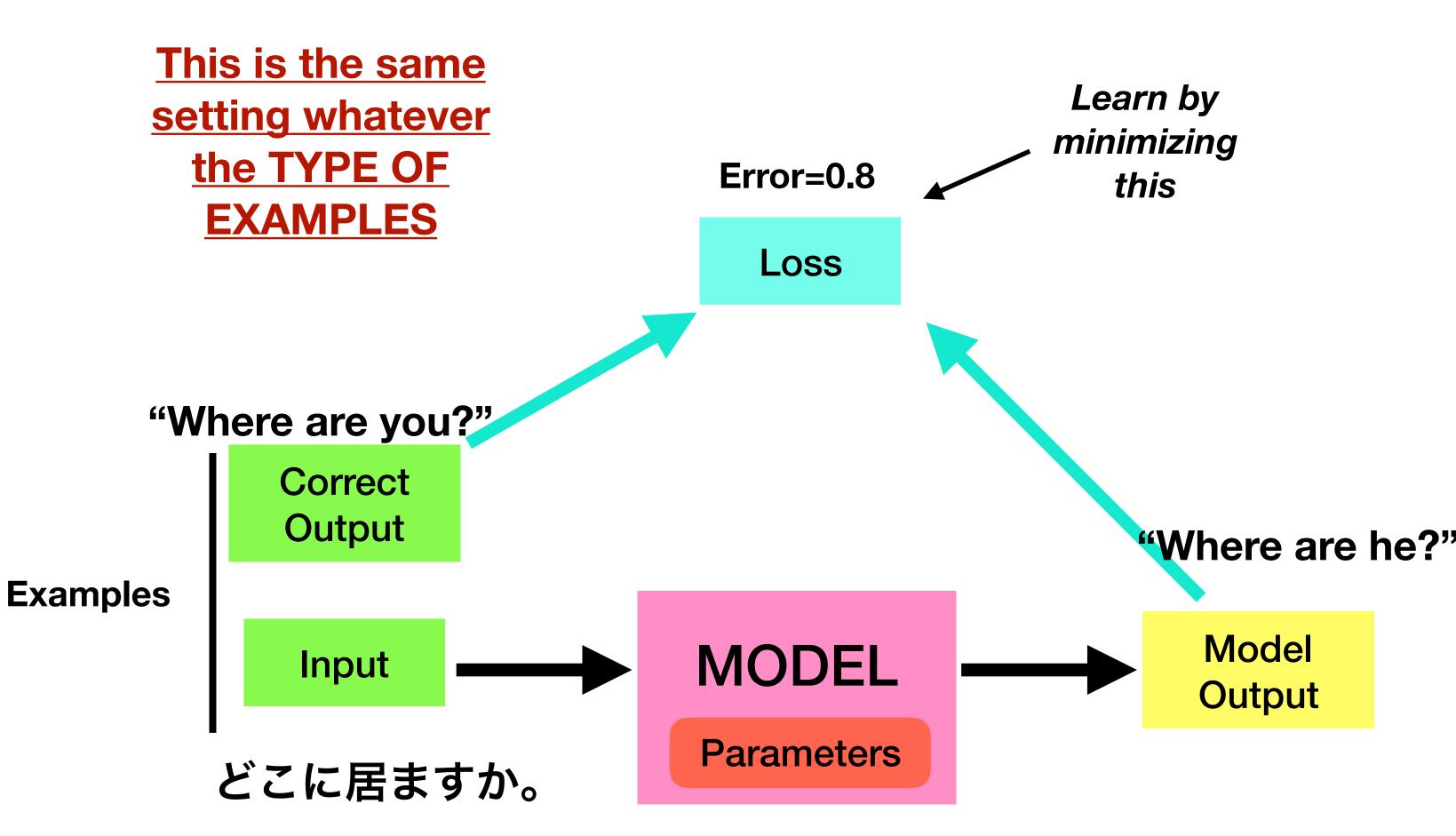
Learning to multiply numbers by two

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



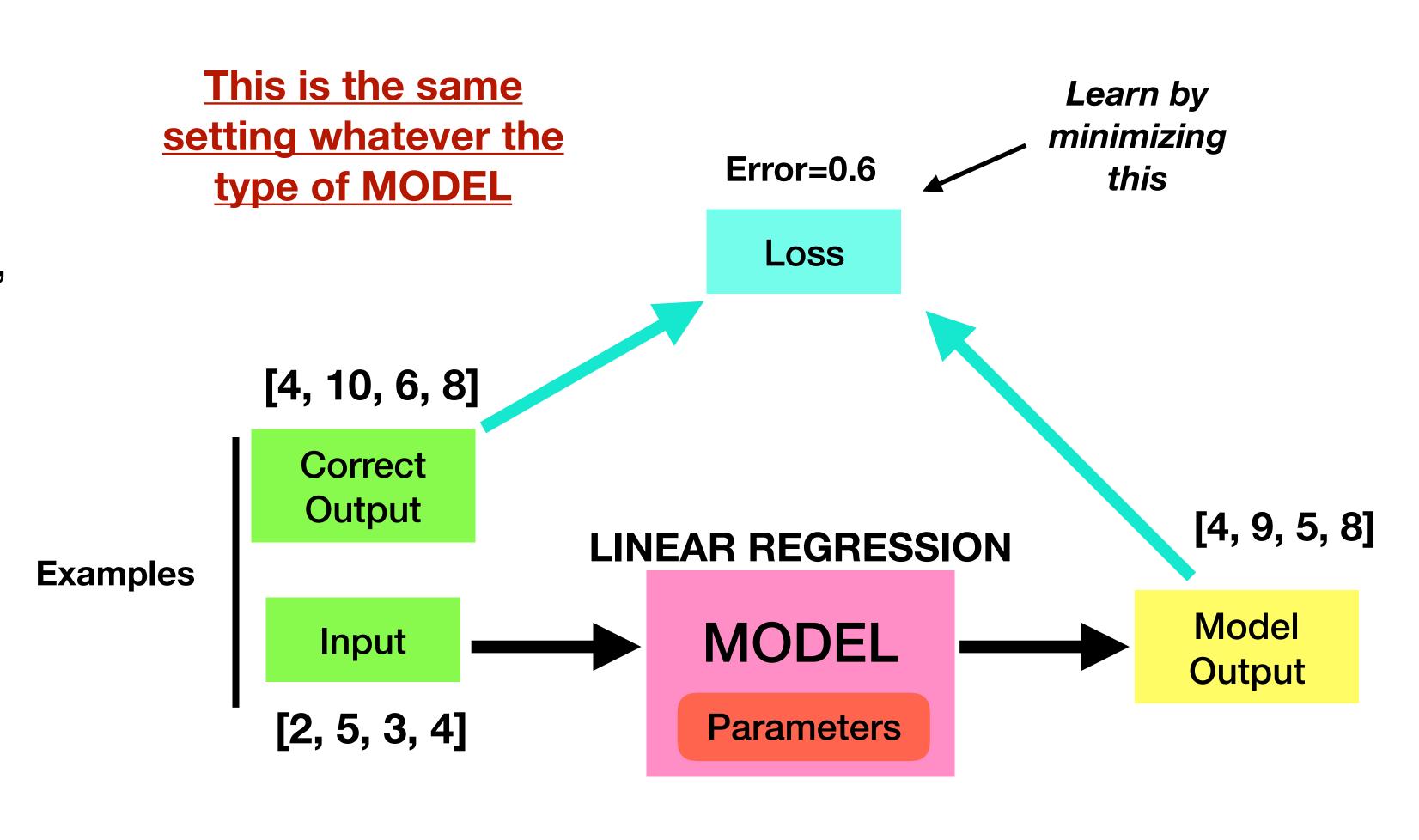
Learning to recognize images

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



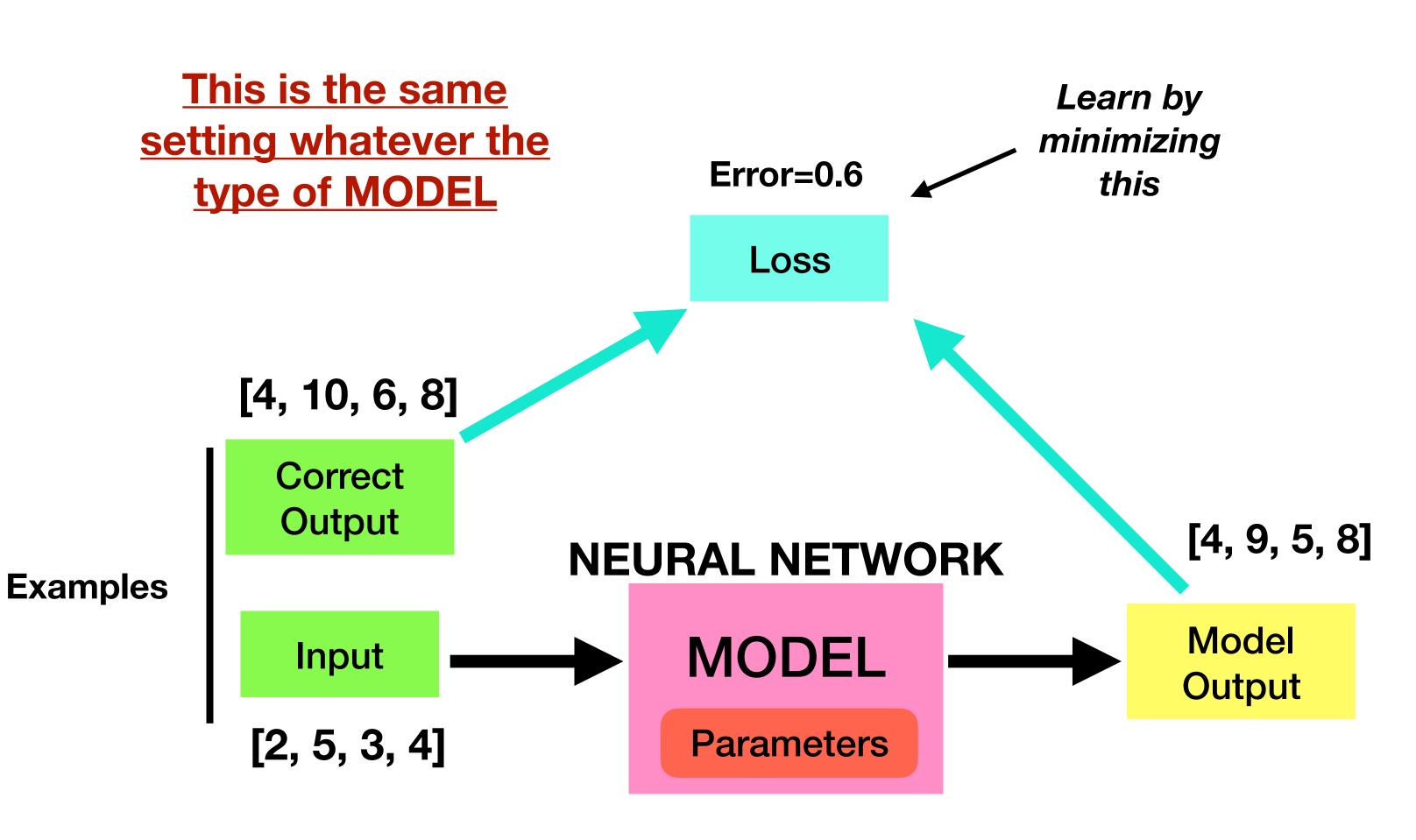
Learning to translate

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



Learning to multiply numbers by two with a Linear Regression Model

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



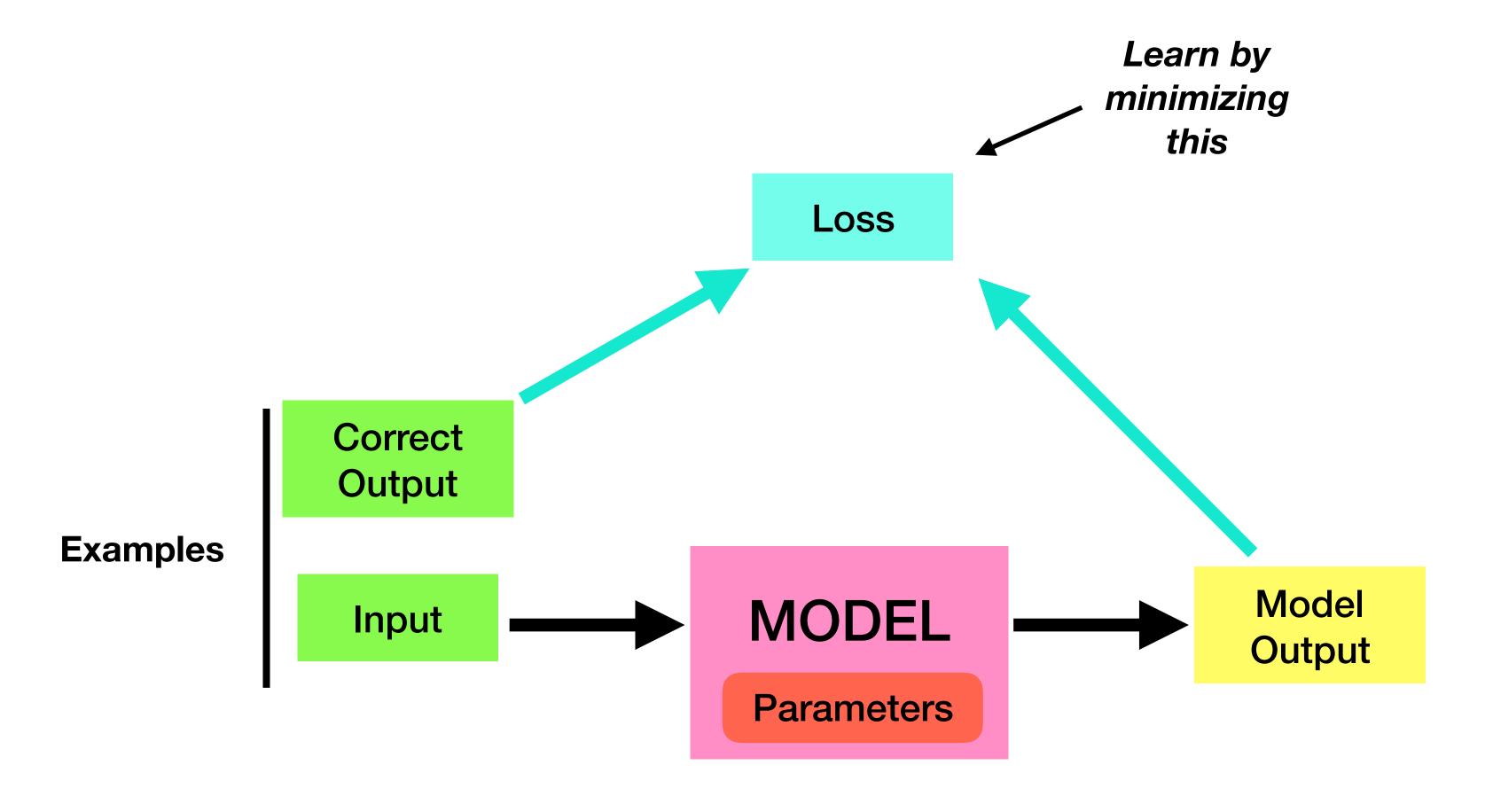
Learning to multiply numbers by two with a Neural Network

Terminology

- Because minimizing a loss is the main way for "learning", for us, the following expressions have all the same meaning:
 - Minimizing the Loss of a Model for some examples
 - Training a Model on some examples
 - Having a Model learn from some examples

 We will go back to these concepts later in the semester

 For now, let us focus on methods for minimizing a function



Minimizing a function of one variable

Functions of one variable

- Hopefully, you are all familiar with the concept of "functions of one variable"
 - Terminology: also called "Univariate function"
- Take a <u>single number</u> as input, give a single number as output

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(-1) = 2$
 $f(x) = x^2 - x$ $f(0) = 0$
 $f(0.1) = -0.99$

Minimizing a function of one variable

- Given a function of one variable *f(x)*, what is the input number *x* that gives the smallest output number?
- We note this number arg min f(x)

```
• What is \underset{x}{\operatorname{arg\,min}} f(x) for f(x) = x^2 + 3?
• What is \underset{x}{\operatorname{arg\,min}} f(x) for f(x) = x?
• What is \underset{x}{\operatorname{arg\,min}} f(x) for f(x) = x^2 - x?
```

Minimizing a function of one variable

pollev.com/fabiencromie576

- Given a function of one variable *f(x)*, what is the input number *x* that gives the smallest output number?
- We note this number arg min f(x)

• What is
$$\underset{x}{\arg\min} f(x)$$
 for $f(x) = x^2 + 3$?
• What is $\underset{x}{\arg\min} f(x)$ for $f(x) = x$?
• What is $\underset{x}{\arg\min} f(x)$ for $f(x) = x^2 - x$?

 χ

The "High School" view of minimization

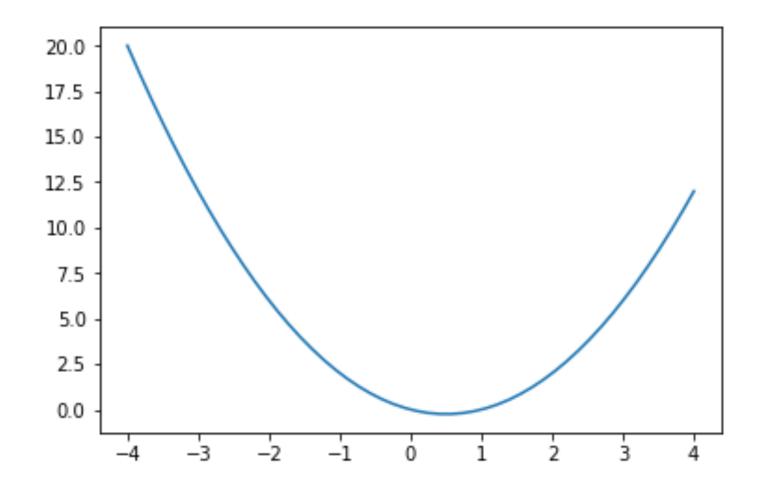
Let us start by recalling what we learn in high school

The "High School" view of minimization

• Let us start by recalling what we learn in high school

To minimize f(x):

- 1. Compute first derivative f'(x)
- 3. Compute second derivative f"(x)
- 5. Find x0 such that f'(x0) = 0
- 6. If f''(x0) > 0 then x0 is a local minimum of f''(x0) > 0



$$f: \mathbb{R} \to \mathbb{R}$$

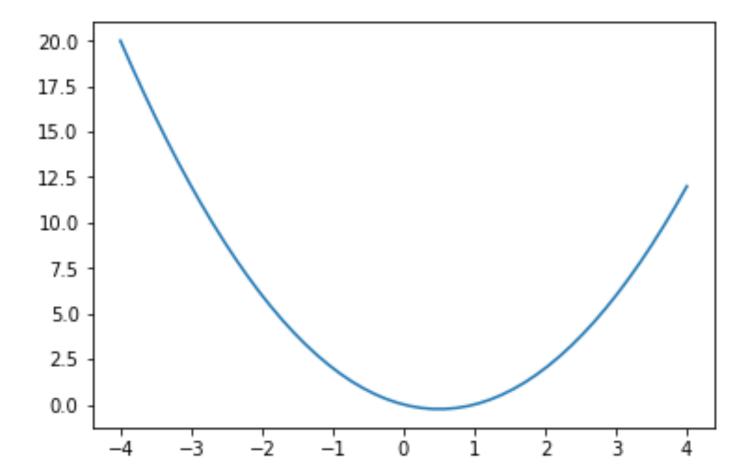
$$f(x) = x^2 - x$$

The "High School" view of minimization

• Let us start by recalling what we learn in high school

To minimize f(x):

- 1. Compute first derivative f'(x)
- 3. Compute second derivative f"(x)
- 5. Find x0 such that f'(x0) = 0
- 6. If f''(x0) > 0 then x0 is a local minimum of f



$$f: \mathbb{R} \to \mathbb{R}$$

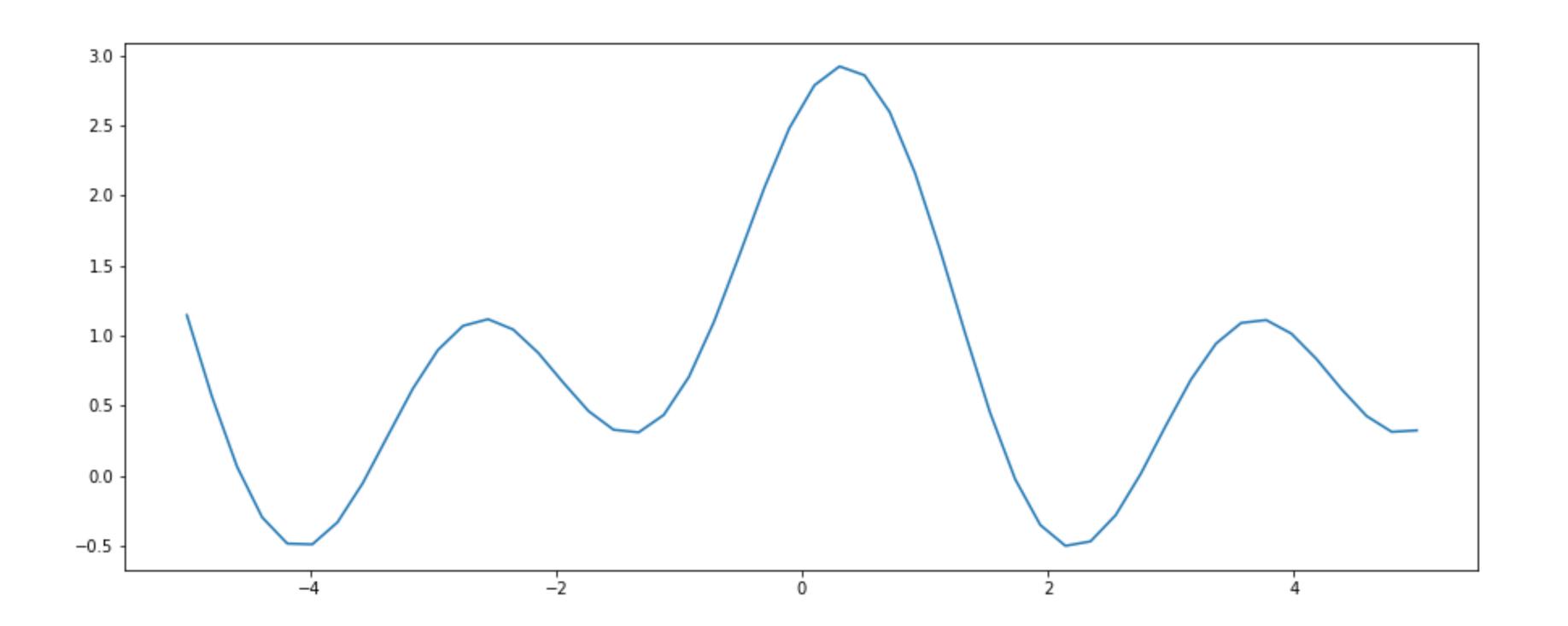
$$f(x) = x^2 - x$$

$$f'(x) = 2x - 1 \longrightarrow x_0 = 0.5$$

$$f''(x) = 2$$

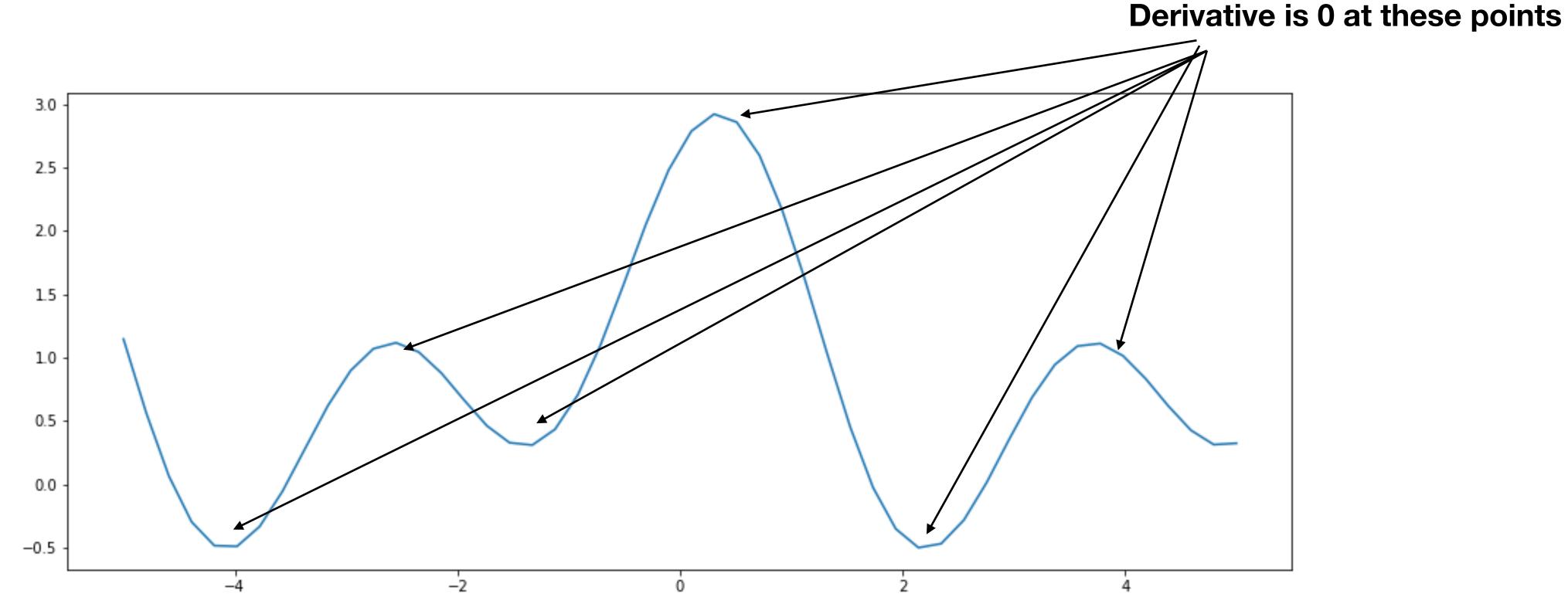
Local minimum, local maximum

 Note that the condition on the second derivative is important to distinguish minimums from maximum



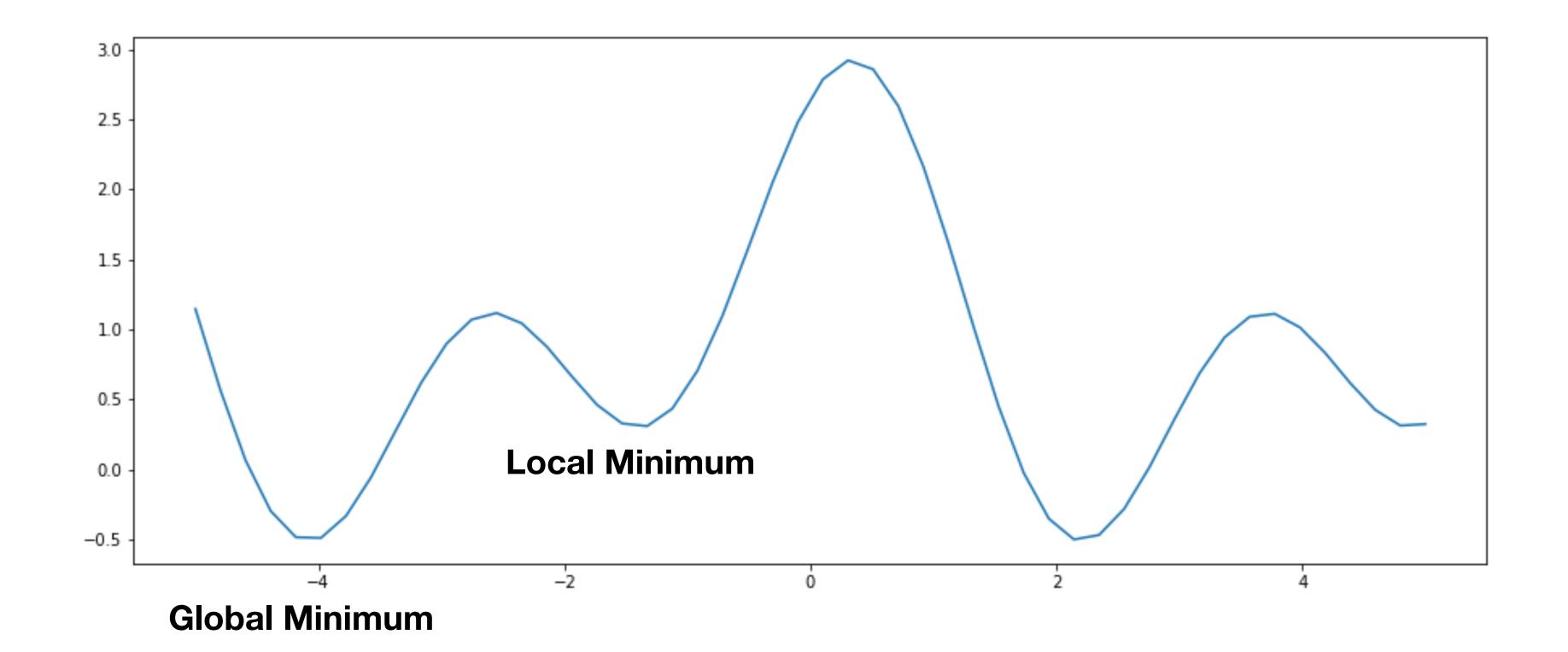
Local minimum, local maximum

 Note that the condition on the second derivative is important to distinguish minimums from maximum



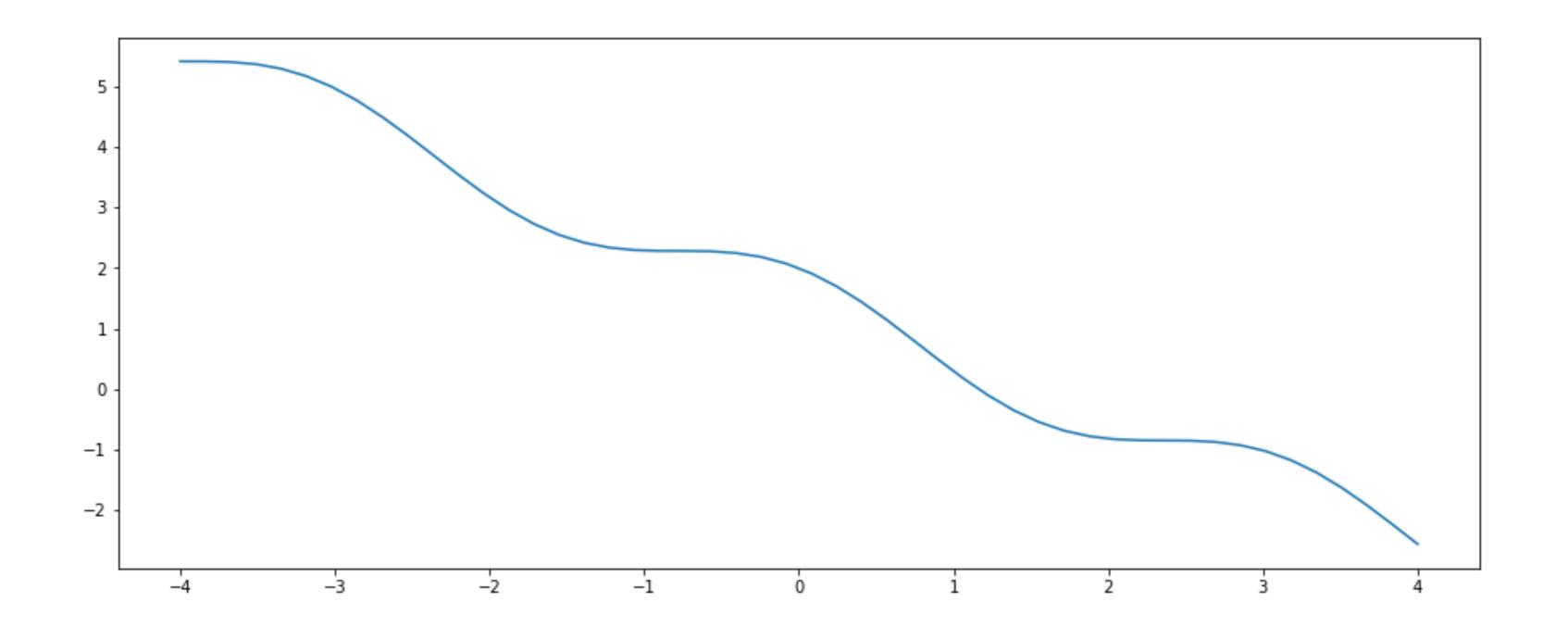
Local minimum, local maximum

- Note that the condition on the second derivative is important to distinguish minimums from maximum
- Also, the solution could be only a local minimum



Absence of minimum

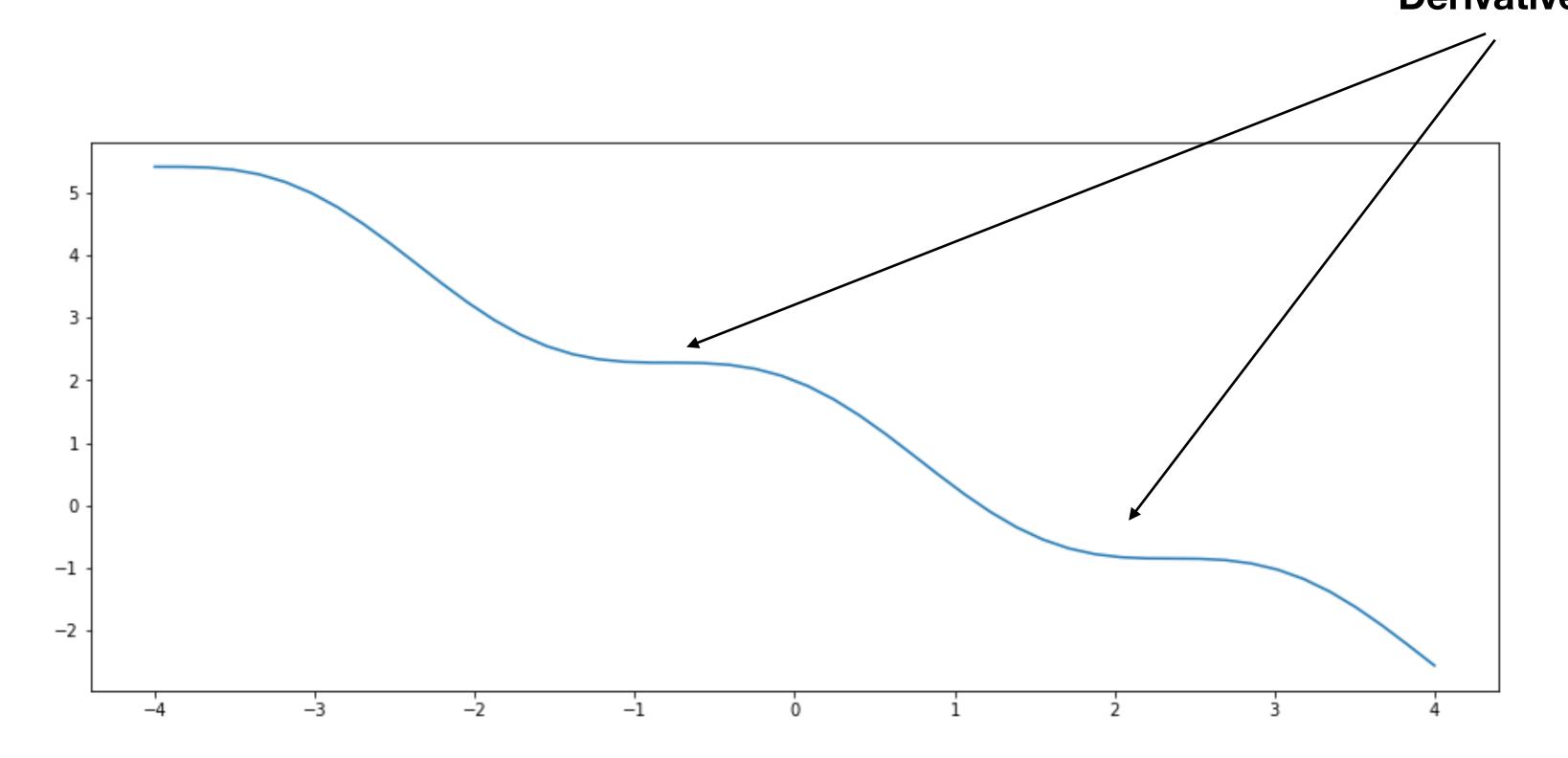
A function may have no minimum



Absence of minimum

• It is even possible for derivative to be 0 even if the function has no minimum

Derivative is 0 at these points



Let us take 15 minutes to review derivatives

Derivatives! Oh no!!

Don't worry. It is a quick review. But in the real world, we rarely have to compute derivatives

Computers do that for us.

Still. It is good to have some basics.

Let us take 15 minutes to review derivatives

- Does everybody remember how to compute derivatives?
- Do not panic if you don't.
 - In practice, we will have functions that can compute the derivatives automatically for us
 - Still, you should understand at least how they work
 - we will review briefly the basics

Different ways of considering derivatives

- We can see derivatives in different ways.
- In high school, derivatives are often introduced as a set of rules that let you compute a derivative from a function.
- Let us review that first.

Computing derivatives

f(x)	f'(x)	
sin(x)	cos(x)	
cos(x)	-sin(x)	
\boldsymbol{x}^{n}	nx^{n-1}	
log(x)	$\frac{1}{x}$	
e^{x}	e^{x}	
g(h(x))	$h'(x) \times g'(h(x))$	Composition rule
	$g'(x) \times h(x) + g(x)$	$f(x) \times h'(x)$ Leibniz rule
g(x) + h(x)	g'(x) + h'(x)	Linearity I
$\alpha \cdot h(x)$	$\alpha \cdot h'(x)$	Linearity II

Exercise:

$$sin(x) + log(x)$$

$$2 \times log(x + 1)$$

$$sin(2x)$$

$$\frac{e^x}{x}$$

Different ways of considering derivatives

- We can see derivatives in different ways.
- In high school, derivatives are often introduced as a set of rules that let you compute a derivative from a function.
- Let us review that first.
- The other way to see a derivative is as a <u>local linear approximation of a function</u>

What is a derivative?

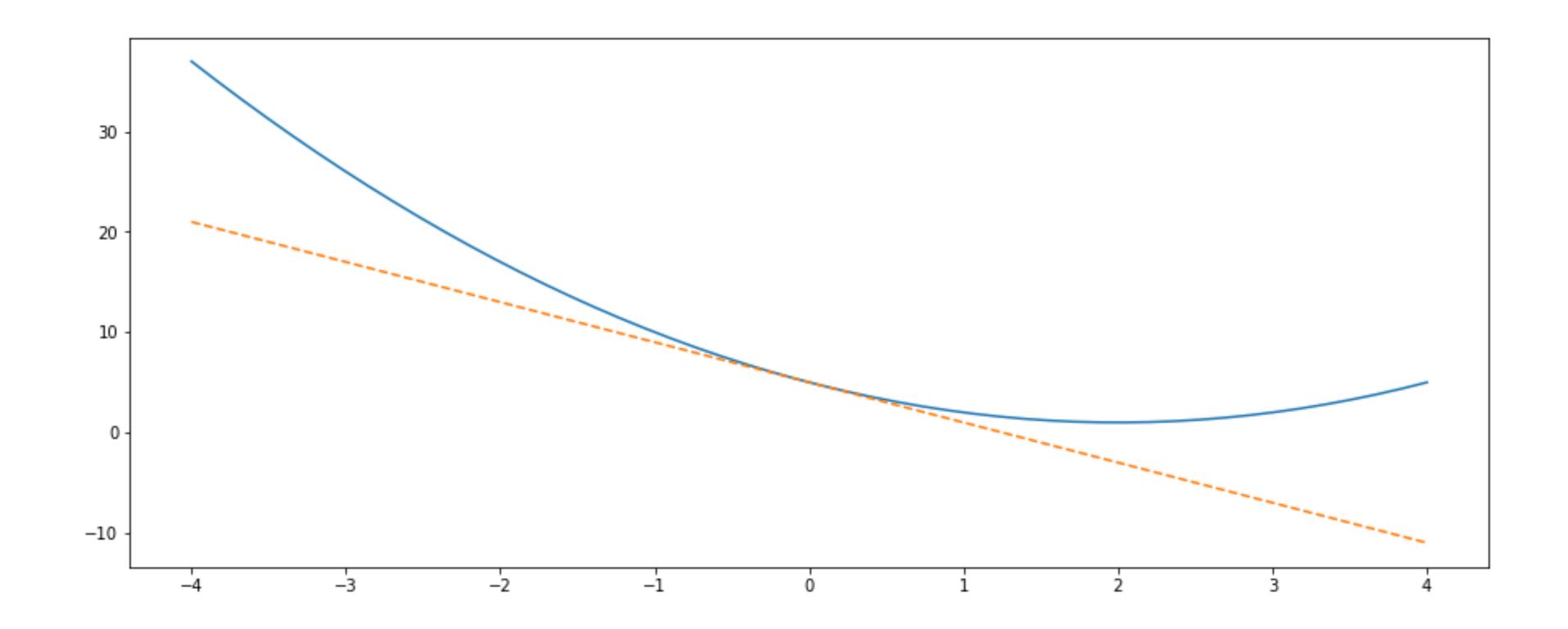
- One definition: the coefficient of the best linear approximation of a function at x
- If h is small: $f(x+h) \approx f(x) + h \cdot f'(x)$
- Example:
 - if we know that log(2.3) = 0.832909...
 - How much is log(2.4)?
 - Supposing we cannot compute a log again
 - $\cdot 2.4 = 2.3 + 0.1$
 - We can approximate: $log(2.4) \approx log(2.3) + 0.1 \times \frac{1}{2.3}$
 - Which gives: $log(2.3) + 0.1 \times \frac{1}{2.3} = 0.876387...$
 - The true value is: log(2.4) = 0.875468...

Different ways of considering derivatives

- We can see derivatives in different ways.
- In high school, derivatives are often introduced as a <u>set of rules</u> that let you compute a derivative from a function.
- Let us review that first.
- The other way to see a derivative is as a <u>local linear approximation of a</u> function
- Equivalently, the derivative is the slope of the tangent of the function at a point

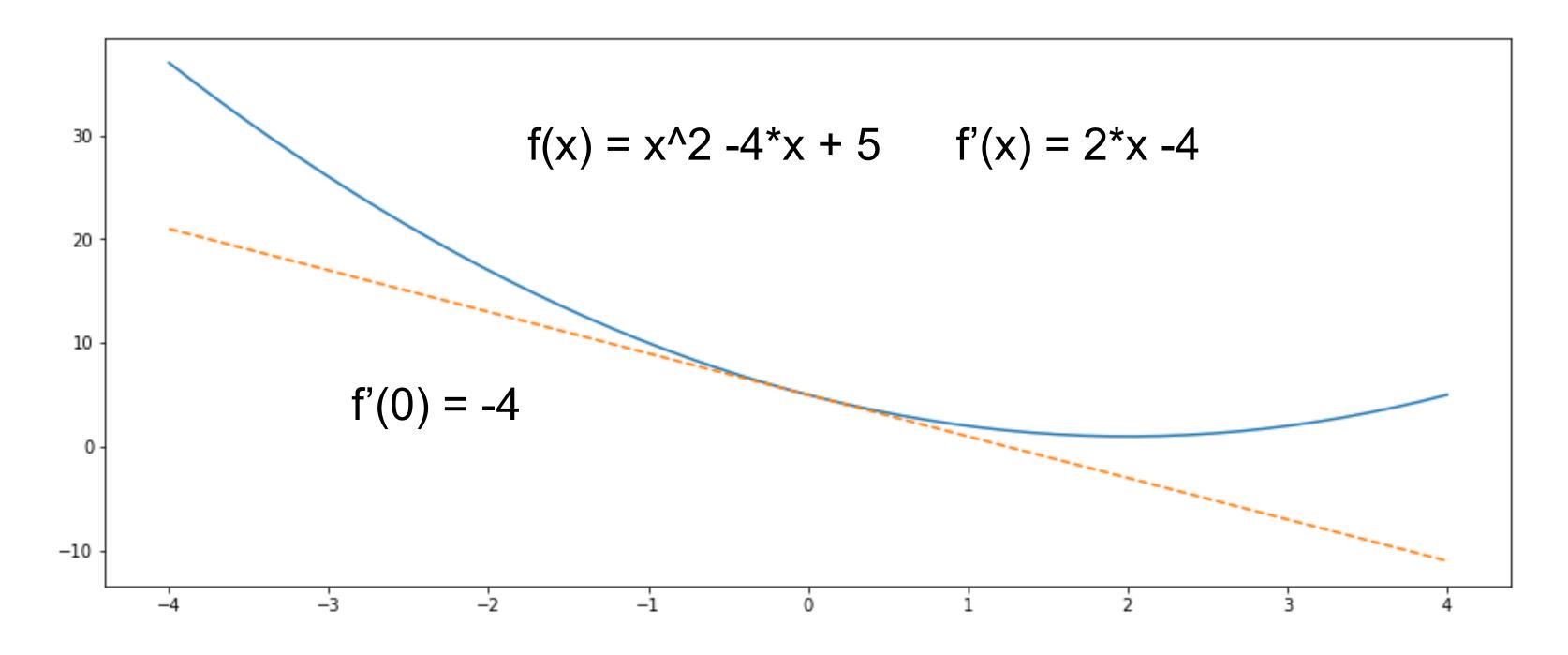
What is a tangent?

• The line that best approximate a line at a point



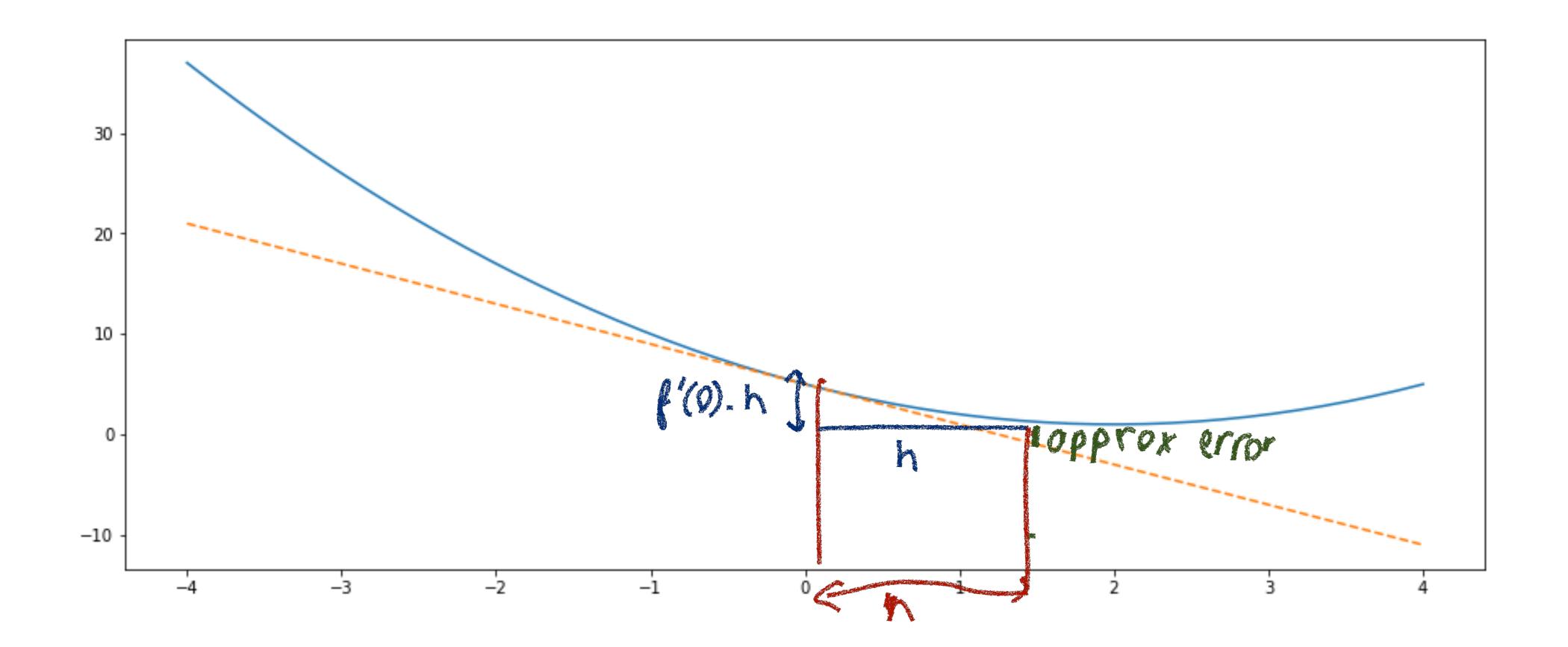
What is a derivative?

 The derivative is also the coefficient of the tangent to the graph of the function.



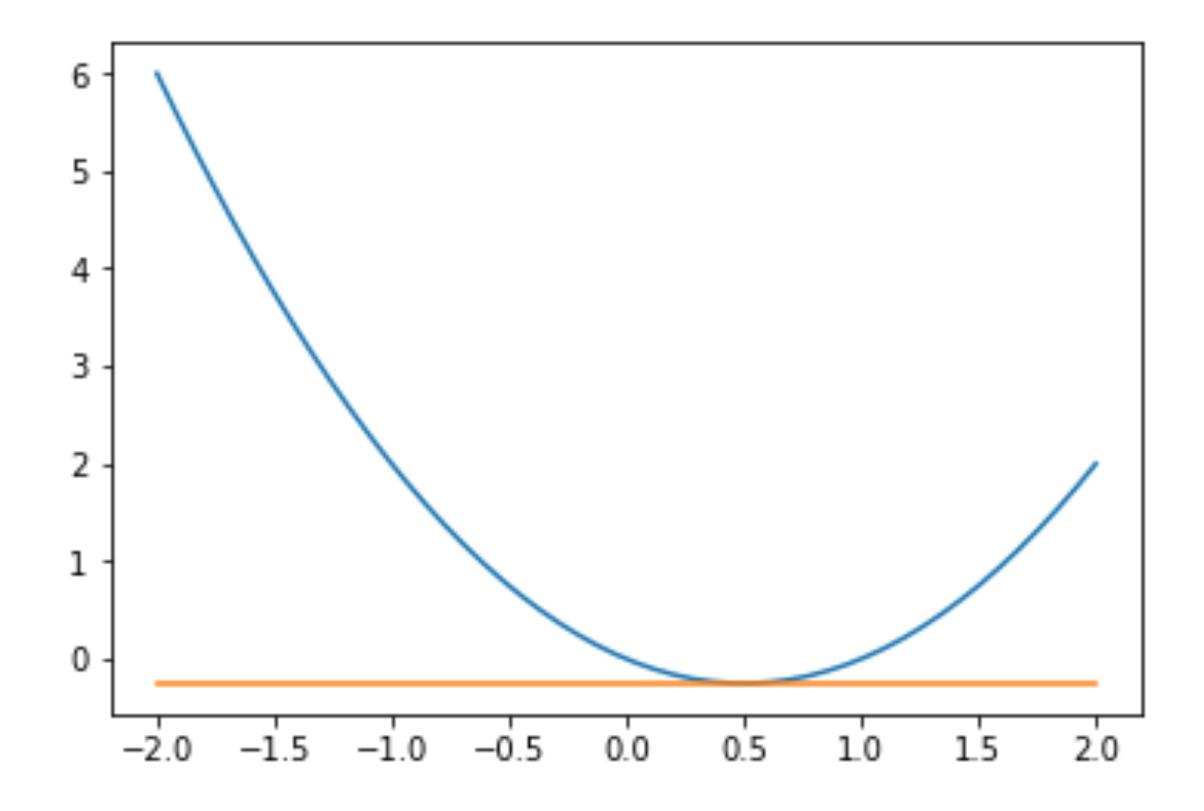
Tangent and derivative

$$f(x+h) \approx f(x) + h \cdot f'(x)$$



Derivative and minimum

Intuitively, this shows you why the derivative should be zero at a minimum

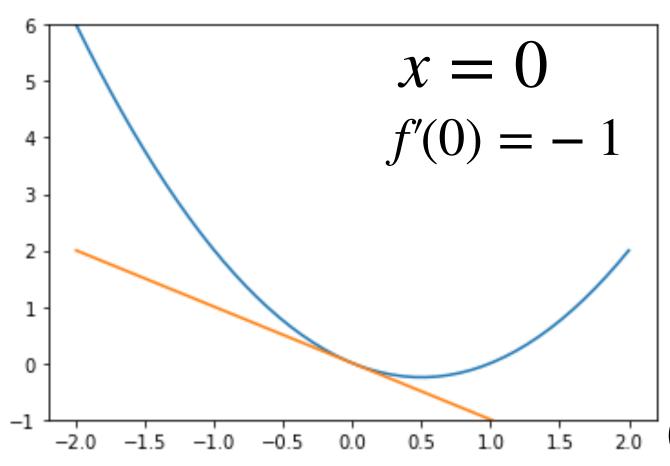


Derivative and minimum

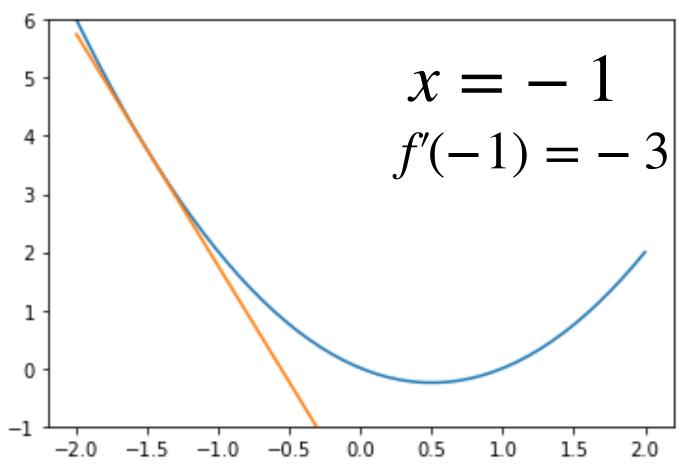
Let us look again at how a derivative can help us find a minimum

Derivative and minimum

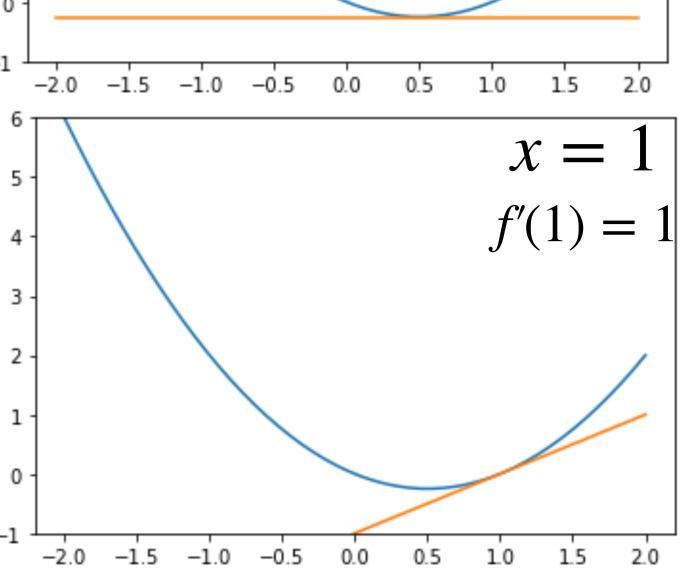
The derivative tells us in which direction move to find the minimum



If derivative at x is negative, minimum is on the right (we need to increase x to get closer to the minimum)



If derivative at x is zero, x should be a minimum (not necessarily in theory, but in our cases, it will be)



x = 0.5

Gradient Descent Algorithm

- This suggests some procedure for finding a minimum:
 - Start at any x (eg. x = 0)
 - Compute f'(x)
 - If f'(x) > 0: Decrease x a bit
 - If f'(x) < 0: Increase x a bit
 - Repeat

Gradient Descent Algorithm

- This suggests some procedure for finding a minimum:
 - Start at any x (eg. x = 0)
 - Compute f'(x)
 - If f'(x) > 0: Decrease x a bit
 - If f'(x) < 0: Increase x a bit
 - Repeat

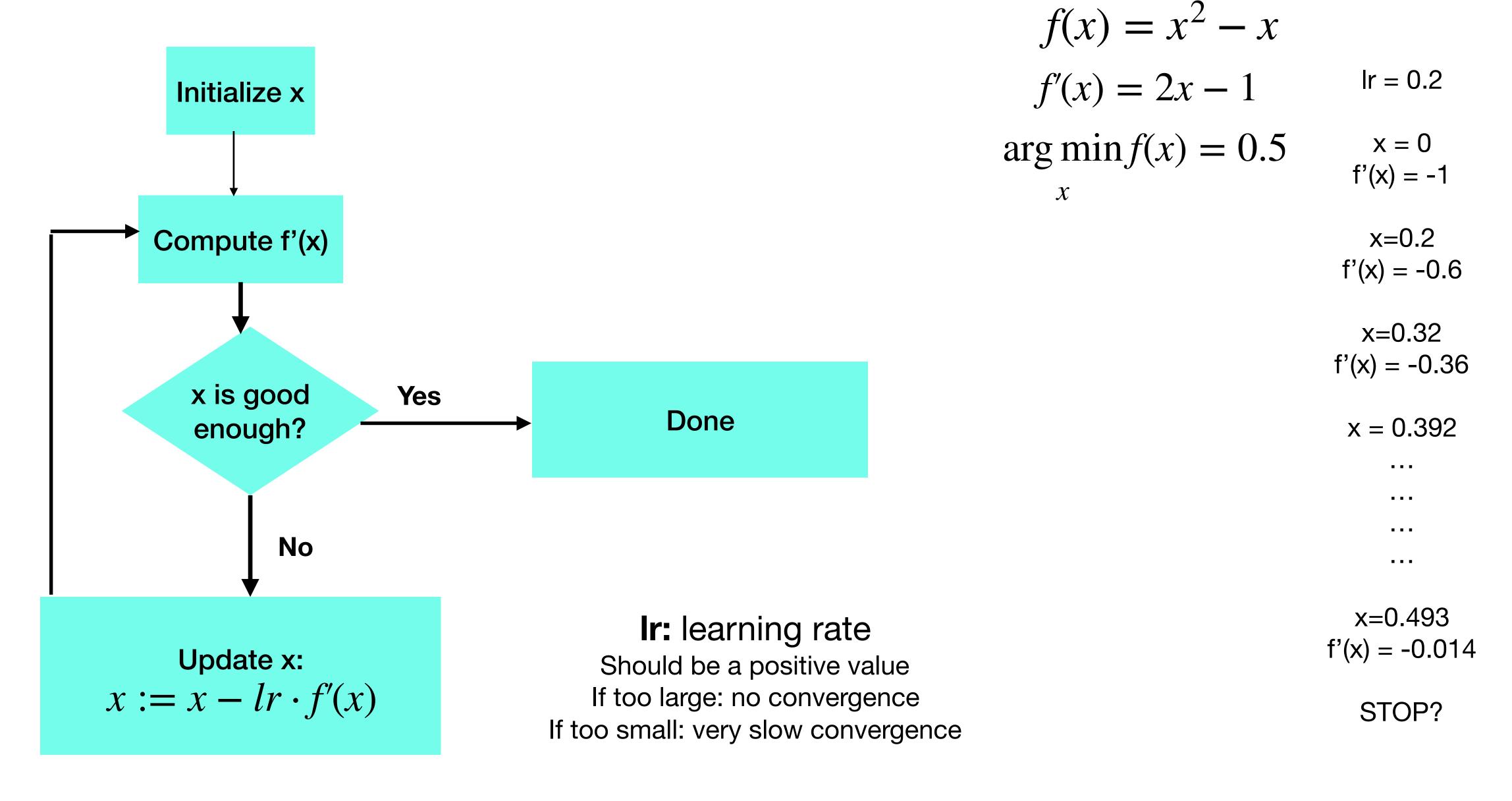
In practice, we do this:

$$x := x - lr \cdot f'(x)$$

Ir: learning rate

Should be a positive value
If too large: no convergence
If too small: very slow convergence

Gradient Descent algorithm



Gradient Descent algorithm

- Let us try to see a bit more how it works in practice using Jupiter Notebooks
 - https://colab.research.google.com/drive/1Pdn4laPkbt-DU3w2EdidFiqdXAq63QJu
 - bit.ly/2KDOoTP

Gradient Descent Algorithm

- Gradient descent works well even when we have functions of millions of variable
 - This is why it is so useful for Machine Learning and Neural Networks
 - Other methods will not be practical in such settings
- Convergence will depend on the choice of a good learning rate
 - In experiments, a good deal of time is often spent finding an optimal learning rate
 - Too large learning rate: no convergence (ie. the system learn nothing)
 - Too small learning rate: slow convergence (ie. the system takes a long time to learn)

Minimizing a function of several variables

Functions of several variables

 A function of several variables is just that: a function which has several variables

$$f: \mathbb{R}^3 \to \mathbb{R}$$
$$f(x, y, z) = (x - y)^2 + z^2 - z$$

$$f(0,0,0) = 0$$

 $f(1,2,3) = 7$
 $f(-1,2,2) = 11$
 $f(0,1,1) = ?$
 $f(2,2,0) = ?$

Like before, we want to find its minimum:

$$\underset{x,y,z}{\arg\min} f(x, y, z) = (0,0,0.5)$$

 By fixing one of the variable, we can obtain a function with one less variable

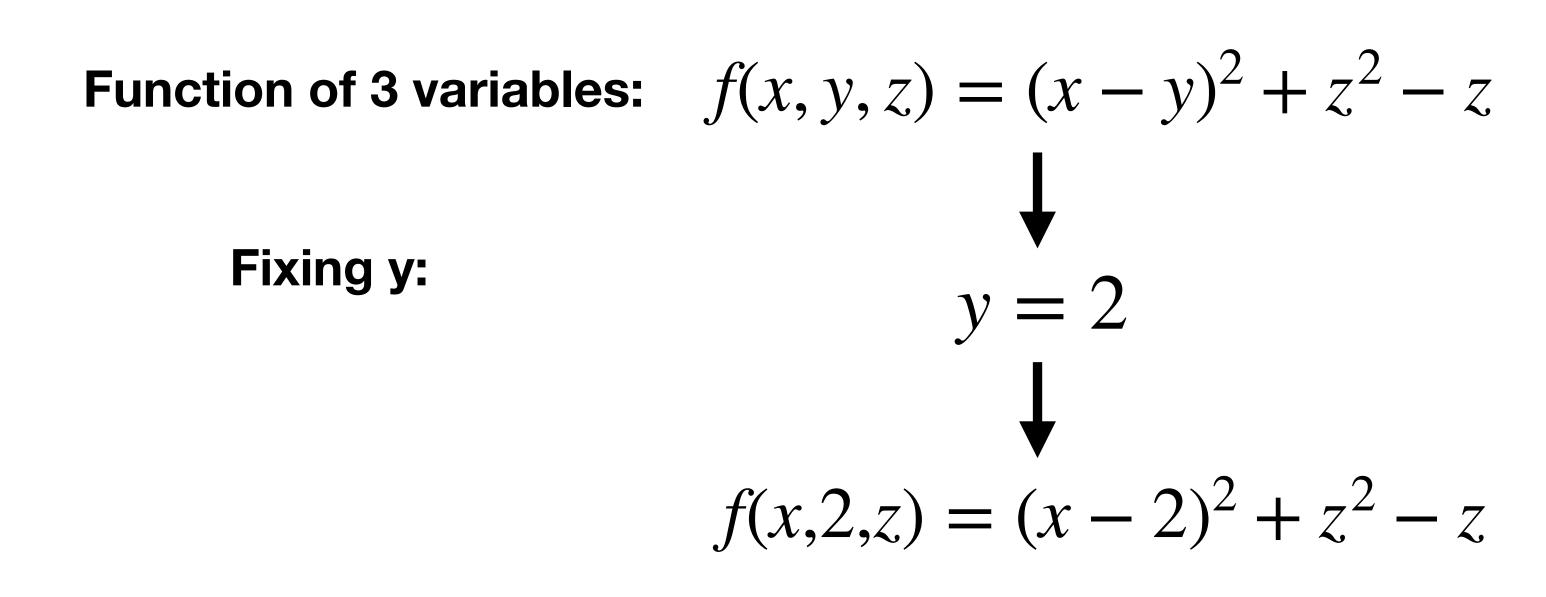
Function of 3 variables:
$$f(x,y,z) = (x-y)^2 + z^2 - z$$
Fixing z:
$$z = 2$$

$$\downarrow$$

$$f(x,y,2) = (x-y)^2 + 4 - 2$$

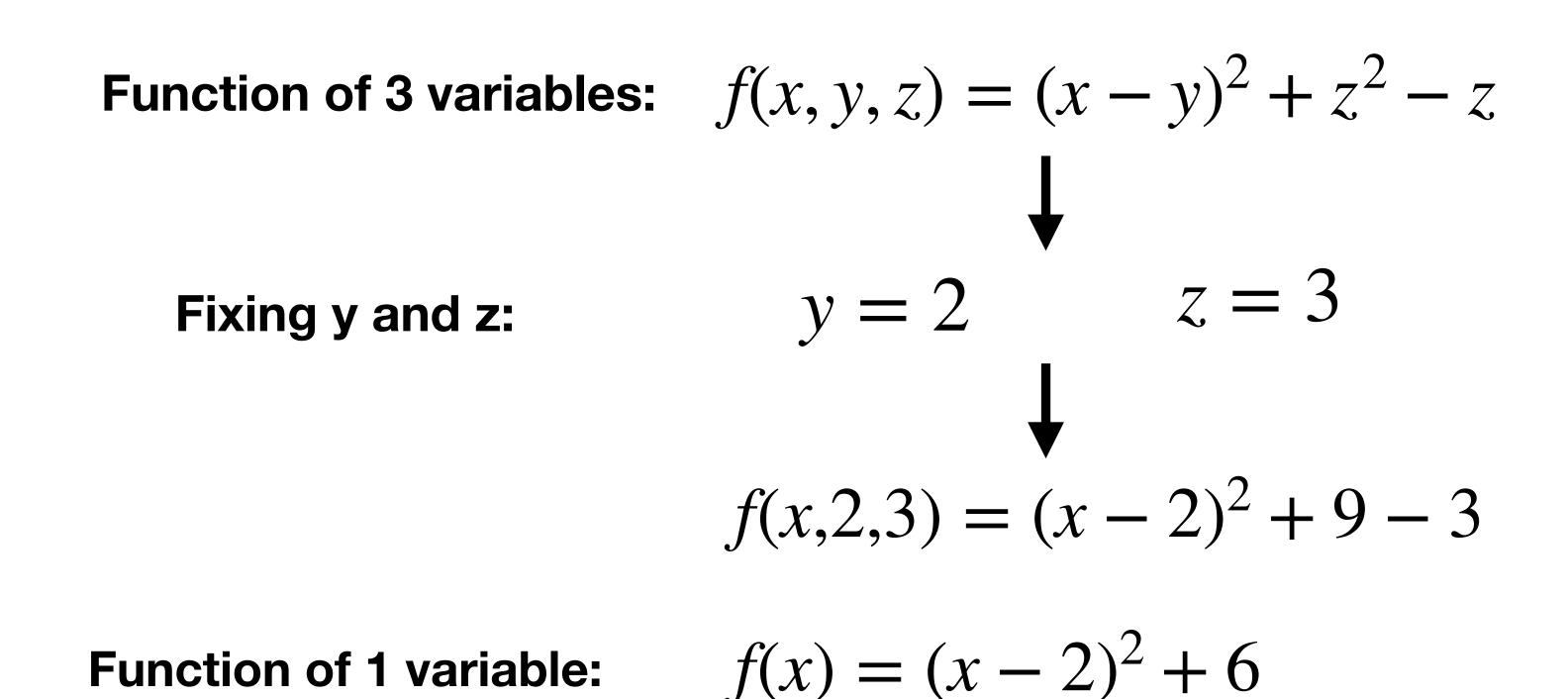
Function of 2 variables: $f(x, y) = (x - y)^2 + 2$

 By fixing one of the variable, we can obtain a function with one less variable



Function of 2 variables: $f(x,z) = (x-2)^2 + z^2 - z$

 By fixing one of the variable, we can obtain a function with one less variable



- Therefore, in this case, variables **y** and **z** can be used to describe a "family" of functions.
- We say they parameterize the

Function of 3 variables:
$$f(x, y, z) = (x - y)^2 + z^2 - z$$

Fixing y and z:

$$y = 2 \qquad z = 3$$

$$f(x,2,3) = (x-2)^2 + 9 - 3$$

Function of 1 variable:

$$f(x) = (x - 2)^2 + 6$$

For each value of y and z, we have one function of one variable

- Therefore, in this case, variables y and z can be used to describe a "family" of functions
- In such a case, we will say that f is a function parameterized by y and z
- And we note the parameters separately, as subscripts

Function of 3 variables:
$$f_{y,z}(x) = (x - y)^2 + z^2 - z$$

Fixing y and z:

$$y = 2$$

$$z = 3$$

$$(x) = (x - 2)^2 + 9 -$$

 $f_{2,3}(x) = (x-2)^2 + 6$

For each value of y and z, we have one function of one variable

Function of 1 variable:

$$f_{0,0}(x) = x^2$$

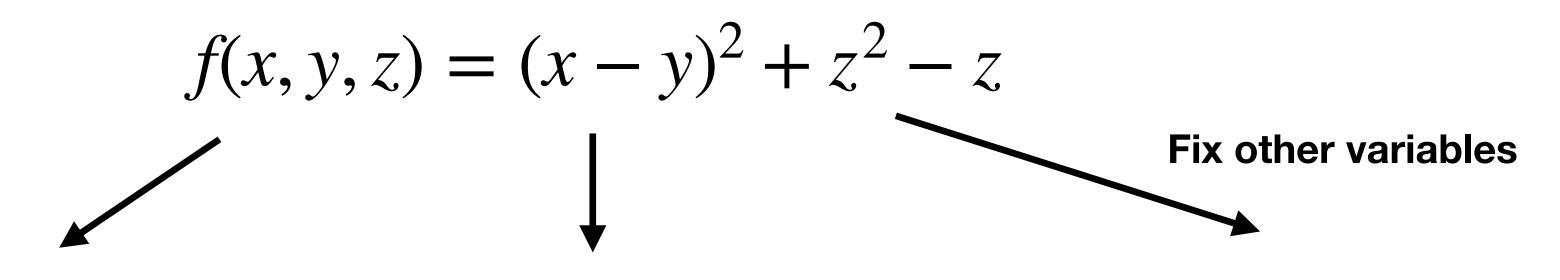
 $f_{0,2}(x) = x^2 + 2$

- What is the equivalent of our "high school" derivatives when we have several variables?
- One part of the answer is *partial derivatives*
- Partial derivatives are computed by <u>choosing one variable</u> and <u>fixing the</u> <u>others</u>
- In other words, we see the function of several variables as a parameterized function of one variable

- What is the equivalent of our "high school" derivatives when we have several variables?
- One part of the answer is *partial derivatives*
- Partial derivatives are computed by <u>choosing one variable</u> and <u>fixing the others</u>
- In other words, we see the function of several variables as a parameterized function of one variable
- Indeed, if we choose y, and fix x and z, we can see f(x, y, z) as a function of one variable and compute its derivative

and compute its derivative
$$f(x,y,z) = (x-y)^2 + z^2 - z$$

$$\frac{\partial f}{\partial x} = 2(x - y) \qquad \frac{\partial f}{\partial y} = 2(y - x) \qquad \frac{\partial f}{\partial z} = 2z - 1$$



$$f_{y,z}(x) = (x - y)^2 + z^2 - z$$
 $f_{x,z}(y) = (x - y)^2 + z^2 - z$ $f_{x,y}(z) = (x - y)^2 + z^2 - z$

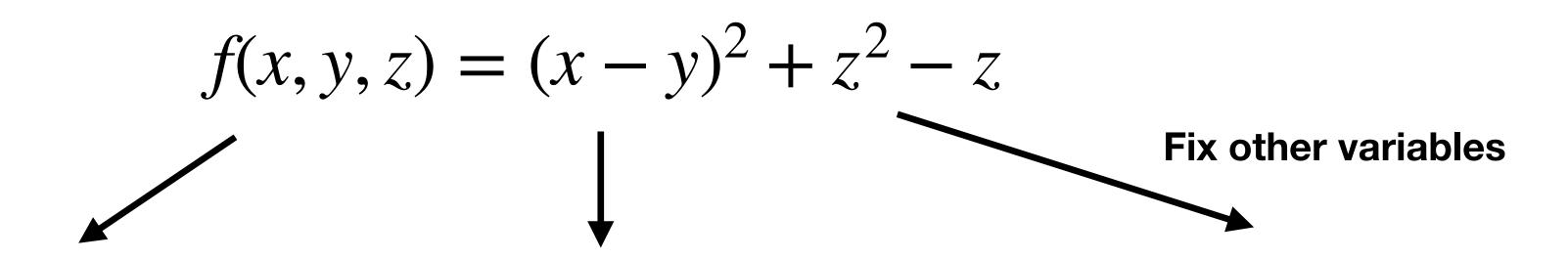
$$f_{x,z}(y) = (x - y)^2 + z^2 - z$$

$$f_{x,y}(z) = (x - y)^2 + z^2 - z$$

$$f'_{y,z}(x) = 2(x - y)$$

$$f'_{x,z}(y) = 2(y - x)$$

$$f'_{x,y}(z) = 2z - 1$$

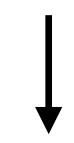


$$f_{y,z}(x) = (x - y)^2 + z^2 - z$$
 $f_{x,z}(y) = (x - y)^2 + z^2 - z$ $f_{x,y}(z) = (x - y)^2 + z^2 - z$

$$f_{x,z}(y) = (x - y)^2 + z^2 - z$$

$$f_{x,y}(z) = (x - y)^2 + z^2 - z$$

Compute derivative



$$f'_{y,z}(x) = 2(x - y)$$

$$f'_{x,z}(y) = 2(y - x)$$

$$f'_{x,y}(z) = 2z - 1$$

In practice, we use this notation for partial derivatives:

$$\frac{\partial f}{\partial x} = 2(x - y)$$

$$\frac{\partial f}{\partial y} = 2(y - x)$$

$$\frac{\partial f}{\partial y} = 2z - 1$$

Computing the partial derivatives

$$f(x, y, z) = (x - y)^2 + z^2 - z$$

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

$$\frac{\partial f}{\partial z} =$$

• Exercise: Compute the partial derivatives

$$f(x, y, z) = xyz - z^2 - y^2$$

$$f(x, y, z) = e^{x+y} - log(z)$$

• Exercise: Compute the partial derivatives
$$f(x, y, z) = xyz - z^2 - y^2$$

Choice A:

$$\frac{\partial f}{\partial x} = yz$$

$$\frac{\partial f}{\partial y} = xz - 2y$$

$$\frac{\partial f}{\partial z} = xy - 2z$$

Choice B:

$$\frac{\partial f}{\partial x} = x - z^2 - y^2$$

$$\frac{\partial f}{\partial y} = y - 2y - z^2$$

$$\frac{\partial f}{\partial z} = z - 2z - y^2$$

• Exercise: Compute the partial derivatives

$$f(x, y, z) = e^{x+y} - log(z)$$

Choice A:

$$\frac{\partial f}{\partial x} = e^{x+y}$$

$$\frac{\partial f}{\partial y} = e^{x+y}$$

$$\frac{\partial f}{\partial z} = -\frac{1}{z}$$

Choice B:

$$\frac{\partial f}{\partial x} = e^{x+y} - \log(z)$$

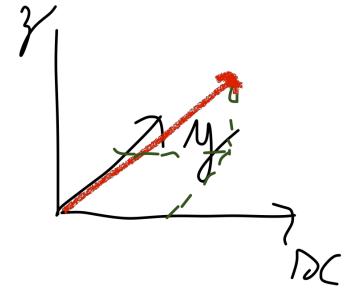
$$\frac{\partial f}{\partial y} = e^{x+y} - \log(z)$$

$$\frac{\partial f}{\partial z} = e^{x+y} - \frac{1}{z}$$

Vectors

- What are vectors?
- You probably have used vectors in Physics classes to represent force and speed
 - 3-dimensional vectors: [2.3, 4.5, -1]
- In Machine Learning, we also use them a lot
- Except that they can have more than 3 dimensions
 - 5-dimensional vector: [-1, 3, 4.1, 5.2, 4]
 - We often note the set of all n-dimensional vectors \mathbb{R}^{r}

$$[1,2.1,4.1,-1,-1] \in \mathbb{R}^5$$



Vectors (Continued)

- For now, we only need to know the following about vectors:
 - A n-dimensional Vector is a list of n numbers
 - We can add 2 vectors (if they have the same dimension)

$$[2.1,3.4,1.1,3.2] + [-1,2.1,3.1, -2] = [1.1,5.5,4.2,1.2]$$

 $[2.1,3.4] + [-1,2.1,3.1, -2] =$

We can multiply a vector by a number

$$0.5 \times [2,3,-1,-2] = [1,1.5,-1.5,-1]$$

Vectors(Continued)

- We will usually denote a vector by a letter with an arrow on it: $\overrightarrow{\chi}$
- We denote the ith component of $\overrightarrow{\mathcal{X}}$ by x_i
- If $\vec{x} = [1,2.2,-1,4]$
 - Then we have $x_0=1$, $x_1=2.2$, $x_2=-1$, $x_3=4$

Vectors: Exercise

$$\vec{x} = [1,5, -2,0.5]$$
 $\vec{y} = [2,2,10,10]$
 $\vec{z} = [3, -3,0]$

- Dimensions of $\vec{x}, \vec{y}, \vec{z}$?
- Values of x₁, y₂, z₀, y₀?
- Compute: $\overrightarrow{x} + \overrightarrow{y}$ $\overrightarrow{x} + 0.5 \times \overrightarrow{y}$ $\overrightarrow{y} + \overrightarrow{z}$

Vectors and Multivariate functions

- For now, we have represented the variables of a multivariate function with the letters x, y, z as in: $f(x, y, z) = (x y)^2 + z^2 z$
- In practice, we can have any number of variables. So it is more convenient to use:
 - x_0 (instead of x), x_1 (instead of y), x_2 (instead of z), x_3 ... x_n (if we need more than 3 variables) $f(x_0, x_1, x_2) = (x_0 x_1)^2 + x_2^2 x_2$
- We can also use a vectorial notation to represent all of the variables as one vector variable:

$$\overrightarrow{x} = [x_0, x_1, x_2]$$
 $f(\overrightarrow{x}) = (x_0 - x_1)^2 + x_2^2 - x_2$

• So, keep in mind that the 3 following expressions actually refer to the same function:

$$f(x, y, z) = (x - y)^{2} + z^{2} - z$$

$$f(x_{0}, x_{1}, x_{2}) = (x_{0} - x_{1})^{2} + x_{2}^{2} - x_{2}$$

$$f(\overrightarrow{x}) = (x_0 - x_1)^2 + x_2^2 - x_2$$

Gradient

The partial derivatives become the component of a vector we call the gradient

$$grad \cdot f(x, y, z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$$

- For example: $f(x, y, z) = (x y)^2 + z^2 z$
- $grad \cdot f(x, y, z) = [2(x y), 2(y x), 2z 1]$

Gradient

$$grad \cdot f(x, y, z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$$

- In this case, the function has 3 variables. Therefore the gradient is a vector of size 3
- If the gradient has n variables, it is a vector of size n
- More precisely, the gradient of f is itself a function that return a vector

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$grad \cdot f: \mathbb{R}^n \to \mathbb{R}^n$$

$$grad \cdot f(x_1, x_2, \dots, x_n) = [g_1, \dots, g_n]$$

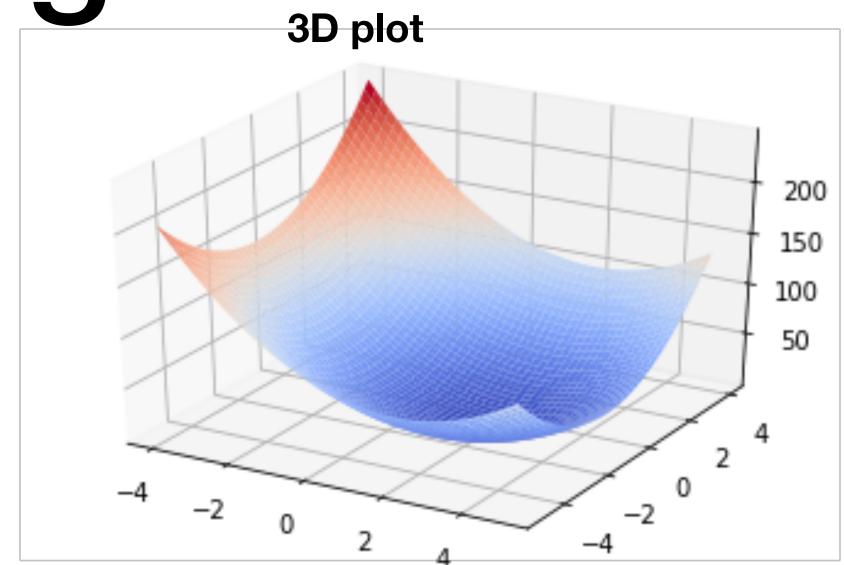
Interpreting the gradient

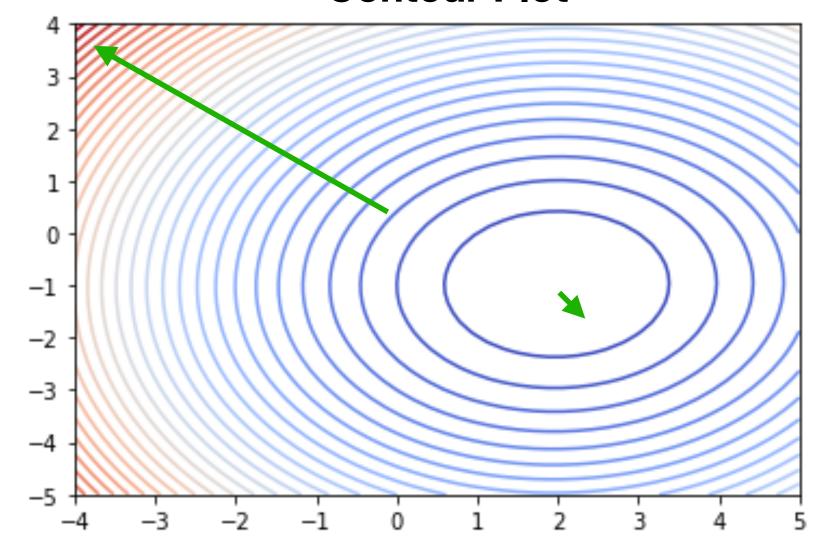
- At a given point, the gradient is the direction for which the value of the function increase fastest
- Therefore, in general, it points in the direction opposite to the minimum

$$f(x,y) = 4(x-2)^2 + 4(y+1)^2 - 0.1xy$$
$$grad \cdot f(x,y) = [8(x-2) - 0.1y, 8(y+1) - 0.1x]$$

$$grad \cdot f(0,0) = [-16,16]$$

$$grad \cdot f(2, -1) = [0.1, -0.2]$$





Gradient Descent

• Because we know that the gradient point in a direction opposite to the minimum, we can use the same idea as in the case of one variable

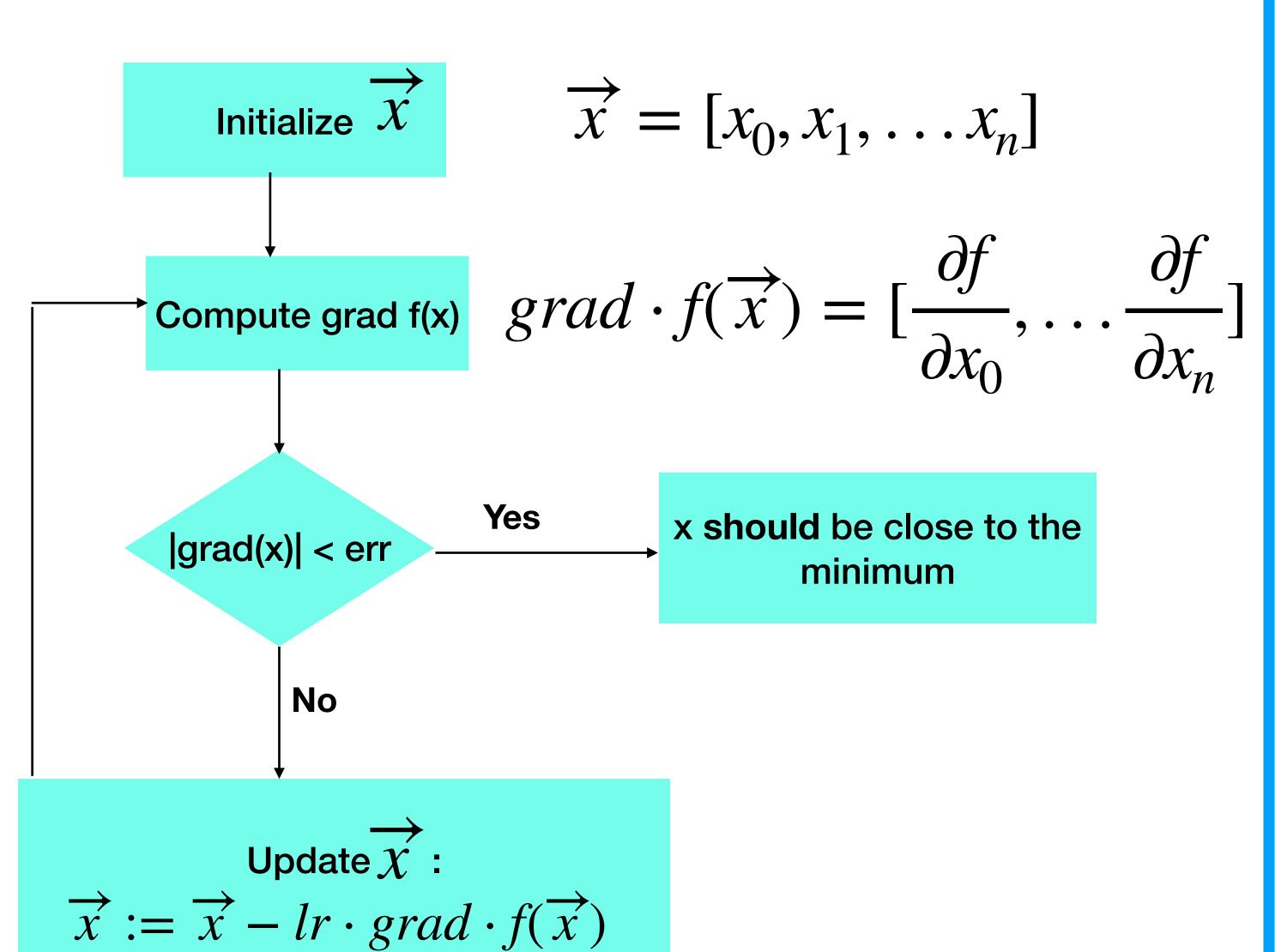
One variable:

$$x := x - lr \cdot f'(x)$$

Multiple variables:

$$\overrightarrow{x} := \overrightarrow{x} - lr \cdot grad \cdot f(\overrightarrow{x})$$

Gradient Descent algorithm



$$f(\overrightarrow{x}) = (x_0 - x_1)^2 + x_2^2 - x_2$$

$$grad \cdot f(\overrightarrow{x}) = [2(x_0 - x_1), 2(x_1 - x_0), 2x_2 - 1]$$

$$lr = 0.2$$

$$\overrightarrow{x} = (0,1,0)$$

$$grad \cdot f(\overrightarrow{x}) = [-2,2,-1]$$

$$\vec{x} = (0.4, 0.6, 0.2)$$

$$grad \cdot f(\vec{x}) = [-0.4, 0.4, -0.6]$$

$$\overrightarrow{x} = (0.41, 0.43, 0.51)$$

$$grad \cdot f(\overrightarrow{x}) = [-0.04, 0.04, 0.01]$$

Let us check gradient descent in practice with some notebook

On google colab: http://bit.ly/2vertEi

• (or full url: https://colab.research.google.com/drive/16MvnlY0TH8HTEiDCgRoWLZOqzGPu4np8)

What is the equivalent of second derivative for multivariate functions?

• It is the Hessian Matrix:

$$\frac{\partial^2 f}{\partial x^2} \qquad \frac{\partial^2 f}{\partial x \partial y} \qquad \frac{\partial^2 f}{\partial x \partial z}$$

$$\frac{\partial^2 f}{\partial x \partial y} \qquad \frac{\partial^2 f}{\partial y^2} \qquad \frac{\partial^2 f}{\partial y \partial z}$$

$$\frac{\partial^2 f}{\partial x \partial z} \qquad \frac{\partial^2 f}{\partial y \partial z} \qquad \frac{\partial^2 f}{\partial z^2}$$

 But <u>for your information</u>, this would be the equivalent of the "High School" minimization when we have several variables:

To minimize f(x, y, z):

- 1. Compute gradient of f(x, y, z)
- 2. Compute hessian of f(x)
- Find x, y, z such that grad f(x,y,z) = 0
- 4. If hessian of f(x,y,z) is definite positive then (x,y,z) is a local minimum of f

Gradient Descent Algorithm

- You can see that, in the case of the gardient descent, the algorithm is the same for univariate functions and multivariate functions
- It is a simple algorithm, but it scales very well
- There exists many variations of it:
 - Gradient Descent with momentum
 - Stochastic Gradient Descent
 - Adagrad, Adadelta, Adam, ...

Gradient Descent with Momentum

Compute a "gradient with momentum" at each iteration:

$$gm_t = 0.6grad \cdot f(\overrightarrow{x}) + 0.4gm_{t-1}$$

$$\overrightarrow{x} := \overrightarrow{x} - lr \cdot gm_t$$

Stochastic Gradient Descent

- What happens if the gradient is noisy?
- That is, we can only compute a value that is equal to the true gradient "on average"?
 - A bit like if you are drunk and trying to get home

Stochastic Gradient Descent

- What happens if the gradient is noisy?
- That is, we can only compute a value that is equal to the true gradient "on average"?
 - A bit like if you are drunk and trying to get home
- It turns out it works.
 - But you have to decrease your learning rate over time to stabilize $lr = \frac{lr_0}{\sqrt{(t+1)}}$

$$lr = \frac{tr_0}{\sqrt{(t+1)}}$$

- Convergence will be slower
- Very interesting because a noisy gradient can be million times faster to compute than a "true" gradient

Optimization libraries

- You can also minimize a function by using a specialized library
- It gives you access to more sophisticated minimization algorithms
- However these more sophisticated algorithms do not scale as well as Gradient Descent
 - Which is one Gradient Descent and its variants are still the main tool for large scale Machine Learning (In particular, Deep Learning)