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Program for today:

• 1- Discuss the mathematical representation of Fully-connected layers in 
Neural Networks


• 2- Define and train a real Neural Network in a Jupyter Notebook



Neural Network Architectures
• We are still here:

Feed-Forward and 

Recurrent

Multi-Layered with

Fully Connected Layers

Convolutional LayersArchitecture can be

Today!



Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:
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Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:
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Keeping in mind what this type of graph mean

Age

Income Logistic 
Classifier

Vote

Logistic 
Classifier

Logistic 
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA

OB

Logistic 
Classifier

Logistic 
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC

OE

OD



Age

Income Logistic 
Classifier

Vote

Logistic 
Classifier

Logistic 
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic 

Classifier

Logistic 
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean



Age

Income Logistic 
Classifier

Vote

Logistic 
Classifier

Logistic 
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic 

Classifier

Logistic 
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean
—>  Each Neural Network architecture defines a function of the input with parameters   θ



Feed-Forward networks with fully connected layers

• Therefore, this is just a visual way of defining a complicated parameterized 
function of Vote given Age and Income:
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—>  Each Neural Network architecture defines a function of the input with parameters   θ



Parameters
• If a neuron has N inputs, it has N+1 parameters

Logistic 
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)
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Parameters
• If a neuron has N inputs, it has N+1 parameters


• Visually, we can associate a parameter to each input, and show θ0 separately
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Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron


• θ0 is often called the bias of the neuron
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Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron


• They are therefore often also  noted w1, w2, w3


• θ0 is often called the bias of the neuron


• It is often noted b

Logistic 
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O(x1, x2, x3) = σ(b + w1 × x1 + w2 × x2 + w3 × x3)

x1

x2

x3

O
w1

w2

w3

b



“Connectionist” view vs “Mathematical” view

• “Connections” viewpoint


• Fully Connected Layers

• Math operations viewpoint


• Matrix multiplications
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“Connectionist” view vs “Mathematical” view

• In practice, computing the output of a fully connected layer is equivalent to computing:


• a Matrix multiplication 


• followed by an activation


• Equivalences:


• Input of the layer (= output of the previous layer) <-> row vector


• Output of the layer (= set of output of each neuron in a layer) <-> row vector


• Weights of a neuron <-> column vector


• Set weights of all neurons in a fully connected layer <-> matrix


• Batched input of a layer (= several inputs at once) <-> matrix

Neuro

Neuro

Neuro

Neuro

Neuro

Neuro

Neuro

Neuro

Input Output



Linear Algebra
• In order to discuss the way Neural Networks are actually implemented, we need to 

discuss some mathematical concepts


• We discuss:


• Vector scalar products  (a.k.a inner product)


• Matrices


• Matrix-vector multiplication


• Matrix-Matrix multiplication


• Warning: it is a bit ambitious to explain that in 30 minutes. Hopefully you understand most 
of it.



Row Vectors  and Column Vectors

• We have seen that vectors are just a “list” of numbers


• We are actually  going to distinguish 2 “types” of vectors: row vectors 
and column vectors
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0.2    3.6    2.1    5.3     -2.2(5-dimensional) 
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(5-dimensional) 
Row vector:



Column vectors
• Column vectors of the same dimension can be added
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Column vectors
• Column vectors can be multiplied by a number

X =2.0
1.1 

-2.0 
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Row vectors
• Row vectors have the same operations as Column vectors


• They can be added:

0.2    3.6    2.1    5.3     -2.2 1.1    -2.0    1.1     -5.3     -1.0 1.3      1.6      3.2     0.0      -3.2+ =

X2.0 0.2    3.6    2.1    5.3     -2.2 = 0.4    7.2    4.2    10.6     -4.4

• They can be multiplied by a number:
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(5-dimensional) 
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Row vectors and Column Vectors

• Row vectors and Column vectors cannot be added together

0.2    3.6    2.1    5.3     -2.2 +
(5-dimensional) 

Row vector

2.2 
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Transposition
• However, row vectors can be transformed in column vectors by an 

operation called transposition (and vice-versa)
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Transposition
• Transposition is usually noted with a T in exponent:
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Inner product (a.k.a Scalar product)
• We can compute the inner product of a row vector and a column vector to obtain a single 

number


• It consists in taking the product of the number dimension by dimension and then taking the 
sum

2      0.0      -1.0 

1.5 

1.0 

2.0

= 2 x 1.5 + 0 x 1 + -1 x 2 = 1.0
(3-dimensional) 

Row vector

(3-dimensional) 
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Inner product (a.k.a Scalar product)
• The vectors should have the same dimension


• You should have the  row vector on the left, and the column vector on the right


• (if it is the opposite, the operation is called outer product and gives a different result)
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Row vector

(3-dimensional) 
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You can try to visualize this as the 
column vector lying down on the row 

vector to produce the number
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Why inner product is important?
• It allows us to express linear functions efficiently 

• And remember that linear functions are one of the fundamental 
components of Machine Learning

score(x, y) = θ0 + θ1 × x + θ2 × y
prediction = σ(score)

Linear regression
f(x, y) = θ0 + θ1 × x + θ2 × y

Logistic Classifier Neuron (same formula as Logistic Classifier)

output(x, y) = σ(θ0 + θ1 × x + θ2 × y)
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Θ0  

Θ1  

Θ2 
σ( )
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1     income0      age0 Θ0  
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4 inputs

Parameters of  
one neuron



1     income0      age0 Θ0  

Θ1  

Θ2 

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)
Representing many inner product at once

1     income1      age1

1     income2      age2

1     income3      age3

θ0 + θ1 × income0 + θ3 × age0

θ0 + θ1 × income1 + θ3 × age1

θ0 + θ1 × income2 + θ3 × age2

θ0 + θ1 × income3 + θ3 × age3

4-dimensional Column vector
3-dimensional  
Column vector

3-dimensional  
Row vectors 

(4 times)

This is called a 4x3 matrix

Batch of 
4 inputs



1     income0      age0 Θ0  

Θ1  

Θ2 

=
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2-dimensional Row vector
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2-dimensional Row vector
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2-dimensional Row vector
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Representing many inner product at once

• If we combine the 2 aspects of having several inputs and several neurons, 
we have what is called a matrix multiplication
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Matrix Multiplication
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Matrix Multiplication
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Matrix Multiplication
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=
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Matrix Multiplication
• We represent many inputs as a matrix


• We represent many neurons as a matrix


• Matrix multiplication compute the output score of all the neurons for all the inputs
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Matrix Multiplication
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Computing the output of many neurons for many inputs

• In practice, we separate the weights from the bias
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ΘA0  

ΘA0  
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(2 inputs and 2 neurons)

ΘA0     ΘB0
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number of input

Computing the output of many neurons for many inputs



Matrix Multiplication

100      50

10       20

2  

1 
=1  

-1 

2x2 matrix
2x2 matrix

2x2 matrix

Batch of 2 inputs Weights for  
2 neurons

Score outputs of the 
2 neurons for each of the 2 inputs 

1     0

Bias for  
2 neurons



• Important: using these matrix representations only work if all the neurons have 
the same input and are fully connected


• Then, in practice, a Fully Connected layer of N neurons with K input can be 
represented by a matrix of weights W of shape KxN, and a bias vector b of 
dimension N.



Feed-Forward networks with fully connected layers

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1

Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3

Layer 5
Age

Income

Vote

• Then, in practice, a Fully Connected layer of N neurons with K input can 
be represented by a matrix of weights W of shape KxN, and a bias vector 
b of dimension N.

1   -2   4 
3    4    0

-10  5  0

Weights for 
layer 2: Bias for layer 2:

1   5   -2   4   1 
3    4    0  6   7 
5   0   0   3   -1 

-10  5  0  1  1

Weights for layer 3: Bias for layer 2:



Yet another visualization

• An interactive Neural Network with Fully Connected Layers


• From some nice people at Google


• https://playground.tensorflow.org



Activations
• Some possible activation functions:

σ(x) =
1

1 + exp(−x)ReLU(x) = max(x,0) tanh(x) = 2σ(2x) − 1 f(x) = x

Rectified Linear Unit Sigmoid 
 (a.k.a logistic function)

Hyperbolic Tangent 
(= a linear transformation  

of the sigmoid)

Linear function 
(useless as activation function)



L1 and L2 Regularization

• We have discusses that L2 Regularization can be used for reducing 
overfitting


• -> Change Regularization and Regularization Rate to observe the effect 
of Regularization



L2 Regularization
• We note |Θ|2 the sum of the square of all parameters Θk (this is called the 

“L2 Norm”)


• Then we add this quantity to the loss we want to minimize:

Loss = MeanSquaredError =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Loss =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2 + λ | ⃗θ |2

• Then we apply Gradient Descent to this new loss



L1 Regularization
• We note |Θ|1 the sum of the absolute value of all parameters Θk (this is 

called the “L1 Norm”)


• Then we add this quantity to the loss we want to minimize:

Loss = MeanSquaredError =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Loss =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2 + λ | ⃗θ |

• Then we apply Gradient Descent to this new loss



Random restarts

• Because the weights of a neural network are initialized randomly, the 
result of a training will change every time we reinitialize the network


• Therefore, to obtain best performances, it is common to train a networks 
several times with different random initializations, and keep the best result


• -> Press the reload button to restart a training with new random weight 
initialization



Regularization methods for Neural Network

• When we train a network with many neurons, the danger of overfitting is 
large


• There are a few technics that are very efficient at preventing this:


• Early Stopping


• Dropout


• Weight Decay


• Stochastic Gradient Descent



Early stopping

• We keep a validation set separate from the training data


• We fix a patience number (typically patience = 10 or 20)


• During training, if we see no improvement on validation set after patience 
measures, we stop the training


• Check the evolution of test loss to detect when training should be 
stopped



Dropout

• During training, we add random noise to disturb the network


• In practice, we randomly “cut” a certain proportion of connections 
(typically 10% to 50%)


• Check the effect of adding noise



Stochastic Gradient Descent

• Instead of computing the gradient of the loss for all the training data, we 
compute it for a subsampled part of the training data


• This is actually done anyway to get faster training


• But it is also beneficial to prevent overfitting even if you could afford to 
compute the gradient for all the examples at once.


• -> change batch size to observe what happen when we compute 
gradient on more or less examples



Input features

• We sae that even for a simple model (like linear regression), adding new 
functions of the input can increase the capacity of the model


• -> Add input features and see the effect when there are few neurons


