
Neural Networks with Fully
Connected Layers in Practice

Fundamentals of Artificial Intelligence

Fabien Cromieres

Kyoto University

Program for today:

• 1- Discuss the mathematical representation of Fully-connected layers in
Neural Networks

• 2- Define and train a real Neural Network in a Jupyter Notebook

Neural Network Architectures
• We are still here:

Feed-Forward and

Recurrent

Multi-Layered with

Fully Connected Layers

Convolutional LayersArchitecture can be

Today!

Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Input 1

Input 2

Output

Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Age

Income

Vote

Keeping in mind what this type of graph mean

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC

OE

OD

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic

Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic

Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean
—> Each Neural Network architecture defines a function of the input with parameters θ

Feed-Forward networks with fully connected layers

• Therefore, this is just a visual way of defining a complicated parameterized
function of Vote given Age and Income:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Age

Income

Vote

—> Each Neural Network architecture defines a function of the input with parameters θ

Parameters
• If a neuron has N inputs, it has N+1 parameters

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O

Parameters
• If a neuron has N inputs, it has N+1 parameters

• Visually, we can associate a parameter to each input, and show θ0 separately

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O
θ1

θ2

θ3

θ0

Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron

• θ0 is often called the bias of the neuron

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O
θ1

θ2

θ3

θ0

Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron

• They are therefore often also noted w1, w2, w3

• θ0 is often called the bias of the neuron

• It is often noted b

Logistic
Classifier

O(x1, x2, x3) = σ(b + w1 × x1 + w2 × x2 + w3 × x3)

x1

x2

x3

O
w1

w2

w3

b

“Connectionist” view vs “Mathematical” view

• “Connections” viewpoint

• Fully Connected Layers

• Math operations viewpoint

• Matrix multiplications

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

1 100 50

0

2

-1

5

1

1

“Connectionist” view vs “Mathematical” view

• In practice, computing the output of a fully connected layer is equivalent to computing:

• a Matrix multiplication

• followed by an activation

• Equivalences:

• Input of the layer (= output of the previous layer) <-> row vector

• Output of the layer (= set of output of each neuron in a layer) <-> row vector

• Weights of a neuron <-> column vector

• Set weights of all neurons in a fully connected layer <-> matrix

• Batched input of a layer (= several inputs at once) <-> matrix

Neuro

Neuro

Neuro

Neuro

Neuro

Neuro

Neuro

Neuro

Input Output

Linear Algebra
• In order to discuss the way Neural Networks are actually implemented, we need to

discuss some mathematical concepts

• We discuss:

• Vector scalar products (a.k.a inner product)

• Matrices

• Matrix-vector multiplication

• Matrix-Matrix multiplication

• Warning: it is a bit ambitious to explain that in 30 minutes. Hopefully you understand most
of it.

Row Vectors and Column Vectors

• We have seen that vectors are just a “list” of numbers

• We are actually going to distinguish 2 “types” of vectors: row vectors
and column vectors

0.2

3.6

2.1

5.3

-2.2

0.2 3.6 2.1 5.3 -2.2(5-dimensional)
Column vector:

(5-dimensional)
Row vector:

Column vectors
• Column vectors of the same dimension can be added

0.2

3.6

2.1

5.3

-2.2

1.1

-2.0

1.1

-5.3

-1.0

1.3

1.6

3.2

0.0

-3.2

+ =

(5-dimensional)
Column vector

(5-dimensional)
Column vector

(5-dimensional)
Column vector

Column vectors
• Column vectors can be multiplied by a number

X =2.0
1.1

-2.0

1.1

-5.3

-1.0

2.2

-4.0

2.2

-10.6

-2.0

(5-dimensional)
Column vector

(5-dimensional)
Column vector

Row vectors
• Row vectors have the same operations as Column vectors

• They can be added:

0.2 3.6 2.1 5.3 -2.2 1.1 -2.0 1.1 -5.3 -1.0 1.3 1.6 3.2 0.0 -3.2+ =

X2.0 0.2 3.6 2.1 5.3 -2.2 = 0.4 7.2 4.2 10.6 -4.4

• They can be multiplied by a number:

(5-dimensional)
Row vector

(5-dimensional)
Row vector

(5-dimensional)
Row vector

Row vectors and Column Vectors

• Row vectors and Column vectors cannot be added together

0.2 3.6 2.1 5.3 -2.2 +
(5-dimensional)

Row vector

2.2

-4.0

2.2

-10.6

-2.0

(5-dimensional)
Column vector

= X

Transposition
• However, row vectors can be transformed in column vectors by an

operation called transposition (and vice-versa)

1.1 -2.0 1.1 -5.3 -1.0

1.1

-2.0

1.1

-5.3

-1.0

(5-dimensional)
Column vector

(5-dimensional)
Row vector

TRANSPOSITION

Transposition
• Transposition is usually noted with a T in exponent:

1.1 -2.0 1.1 -5.3 -1.0

1.1

-2.0

1.1

-5.3

-1.0

T =
1.1

-2.0

1.1

-5.3

-1.0

= 1.1 -2.0 1.1 -5.3 -1.0

T

Inner product (a.k.a Scalar product)
• We can compute the inner product of a row vector and a column vector to obtain a single

number

• It consists in taking the product of the number dimension by dimension and then taking the
sum

2 0.0 -1.0

1.5

1.0

2.0

= 2 x 1.5 + 0 x 1 + -1 x 2 = 1.0
(3-dimensional)

Row vector

(3-dimensional)
Column vector

Inner product (a.k.a Scalar product)
• The vectors should have the same dimension

• You should have the row vector on the left, and the column vector on the right

• (if it is the opposite, the operation is called outer product and gives a different result)

2 0.0 -1.0

1.5

1.0

2.0

= 1.0
(3-dimensional)

Row vector

(3-dimensional)
Column vector

2 0.0 -1.0

1.5

1.0

2.0

= 1.0

Inner product (a.k.a Scalar product)

You can try to visualize this as the
column vector lying down on the row

vector to produce the number

1.
5

1.
0

2.
0

= 1.0X X X

3.0 0.0 -2.0+ + 1.0

2 0.0 -1.0

Inner product (a.k.a Scalar product)

You can try to visualize this as the
column vector lying down on the row

vector to produce the number

Why inner product is important?
• It allows us to express linear functions efficiently

• And remember that linear functions are one of the fundamental
components of Machine Learning

score(x, y) = θ0 + θ1 × x + θ2 × y
prediction = σ(score)

Linear regression
f(x, y) = θ0 + θ1 × x + θ2 × y

Logistic Classifier Neuron (same formula as Logistic Classifier)

output(x, y) = σ(θ0 + θ1 × x + θ2 × y)

1 income age

Θ0

Θ1

Θ2

= θ0 + θ1 × income + θ3 × age

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Why inner product is important?

vote(age, income) = 1 income age

Θ0

Θ1

Θ2
σ()

1 income0 age0
Θ0

Θ1

Θ2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Representing many inner product at once

1 income1 age1

1 income2 age2

1 income3 age3

1 income0 age0 Θ0

Θ1

Θ2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Representing many inner product at once

1 income1 age1

1 income2 age2

1 income3 age3

1 income0 age0

Θ
0

Θ
1

Θ
2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Representing many inner product at once

1 income1 age1

1 income2 age2

1 income3 age3

θ0 + θ1 × income0 + θ3 × age0

θ0 + θ1 × income1 + θ3 × age1

θ0 + θ1 × income2 + θ3 × age2

θ0 + θ1 × income3 + θ3 × age3

1 income0 age0 Θ0

Θ1

Θ2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)
Representing many inner product at once

1 income1 age1

1 income2 age2

1 income3 age3

θ0 + θ1 × income0 + θ3 × age0

θ0 + θ1 × income1 + θ3 × age1

θ0 + θ1 × income2 + θ3 × age2

θ0 + θ1 × income3 + θ3 × age3

4-dimensional Column vector
3-dimensional
Column vector

3-dimensional
Row vectors

(4 times)

This represents the computation of the score output
of a single neuron for 4 inputs at the same time!

Batch of
4 inputs

Parameters of
one neuron

1 income0 age0 Θ0

Θ1

Θ2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)
Representing many inner product at once

1 income1 age1

1 income2 age2

1 income3 age3

θ0 + θ1 × income0 + θ3 × age0

θ0 + θ1 × income1 + θ3 × age1

θ0 + θ1 × income2 + θ3 × age2

θ0 + θ1 × income3 + θ3 × age3

4-dimensional Column vector
3-dimensional
Column vector

3-dimensional
Row vectors

(4 times)

This is called a 4x3 matrix

Batch of
4 inputs

1 income0 age0 Θ0

Θ1

Θ2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)
Representing many inner product at once

1 income1 age1

1 income2 age2

1 income3 age3

θ0 + θ1 × income0 + θ3 × age0

θ0 + θ1 × income1 + θ3 × age1

θ0 + θ1 × income2 + θ3 × age2

θ0 + θ1 × income3 + θ3 × age3

4-dimensional Column vector
3-dimensional
Column vector

3-dimensional
Row vectors

(4 times)

This is called a 4x3 matrix

1 10 20
1

2

-1

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)
Representing many inner product at once

1 30 40

2-dimensional Column vector
3-dimensional
Column vector

3-dimensional
Row vectors

(2 times)

?Batch of
2 inputs

Parameters of one
Neuron

1 income0 age0

ΘA0

ΘA1

ΘA2

=

vote(age, income) = σ(θ0 + θ1 × income + θ2 × age)

Representing many inner product at once

ΘB0

ΘB1

ΘB2

θ0 + θA
1 × income + θA

2 × age θ0 + θB
1 × income + θB

2 × age

Parameters for
two different

neurons A and B

2-dimensional Row vector

1 income0 age0

ΘA0

ΘA1

ΘA2

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Representing many inner product at once

ΘB0

ΘB1

ΘB2

θ0 + θA
1 × income + θA

2 × age θ0 + θB
1 × income + θB

2 × age

This is called a
3x2 matrix

3-dimensional
Column vector

(2 times)
3-dimensional
Row vectors

2-dimensional Row vector

1 100 50

0

2

-1

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Representing many inner product at once

5

1

1

3-dimensional
Column vector

(2 times)
3-dimensional
Row vectors

Batch of
1 input

Parameters of two
Neurons

2-dimensional Row vector

1 100 50

0

2

-1

=

vote(age, income) = σ(θ0 + θ1 × age + θ2 × income)

Representing many inner product at once

5

1

1

3-dimensional
Column vector

(2 times)
3-dimensional
Row vectors

Batch of
1 input

Parameters of two
Neurons

Representing many inner product at once

• If we combine the 2 aspects of having several inputs and several neurons,
we have what is called a matrix multiplication

1 income0 age0

1 income1 age1

1 income2 age2

1 income3 age3

ΘA0

ΘA1

ΘA2

=
ΘB0

ΘB1

ΘB2

θ0 + θA
1 × income0 + θA

2 × age0 θ0 + θB
1 × income0 + θB

2 × age0

θ0 + θA
1 × income1 + θA

2 × age1 θ0 + θB
1 × income1 + θB

2 × age1

θ0 + θA
1 × income2 + θA

2 × age2 θ0 + θB
1 × income2 + θB

2 × age2

θ0 + θA
1 × income3 + θA

2 × age3 θ0 + θB
1 × income3 + θB

2 × age3

4x3 matrix 3x2 matrix 4x2 matrix

Batch of 4 inputs Parameters for
2 neurons

Outputs of the
2 neurons for each of the 4 inputs

Matrix Multiplication

1 income0 age0

1 income1 age1

1 income2 age2

1 income3 age3

ΘA0

ΘA1

ΘA2

=
ΘB0

ΘB1

ΘB2

4x3 matrix 3x2 matrix 4x2 matrix

Batch of 4 inputs Parameters for
2 neurons

Matrix Multiplication

1 income0 age0

1 income1 age1

1 income2 age2

1 income3 age3

ΘA0

ΘA1

ΘA2

=
ΘB0

ΘB1

ΘB2

4x2 matrix

Batch of 4 inputs Parameters for
2 neurons

Matrix Multiplication

1 income0 age0

1 income1 age1

1 income2 age2

1 income3 age3

ΘA0

ΘA1

ΘA2

=
ΘB0

ΘB1

ΘB2

4x2 matrix

Batch of 4 inputs Parameters for
2 neurons

θA
0 + θA

1 × income0 + θA
2 × age0

θA
0 + θA

1 × income1 + θA
2 × age1

θA
0 + θA

1 × income2 + θA
2 × age2

θA
0 + θA

1 × income3 + θA
3 × age3

θB
0 + θB

1 × income0 + θB
2 × age0

θB
0 + θB

1 × income1 + θB
2 × age1

θB
0 + θB

1 × income2 + θB
2 × age2

θB
0 + θB

1 × income3 + θB
3 × age3

Matrix Multiplication
• We represent many inputs as a matrix

• We represent many neurons as a matrix

• Matrix multiplication compute the output score of all the neurons for all the inputs

1 income0 age0

1 income1 age1

1 income2 age2

1 income3 age3

ΘA0

ΘA1

ΘA2

=
ΘB0

ΘB1

ΘB2

θ0 + θA
1 × income0 + θA

2 × age0 θ0 + θB
1 × income0 + θB

2 × age0

θ0 + θA
1 × income1 + θA

2 × age1 θ0 + θB
1 × income1 + θB

2 × age1

θ0 + θA
1 × income2 + θA

2 × age2 θ0 + θB
1 × income2 + θB

2 × age2

θ0 + θA
1 × income3 + θA

2 × age3 θ0 + θB
1 × income3 + θB

2 × age3

4x3 matrix 3x2 matrix 4x3 matrix

Batch of 4 inputs Parameters for
2 neurons

Outputs of the
2 neurons for each of the 4 inputs

Matrix Multiplication

1 100 50

1 10 20

1

2

1

=
0

1

-1

2x3 matrix
3x2 matrix 2x2 matrix

Batch of 2 inputs Parameters for
2 neurons

Outputs of the
2 neurons for each of the 2 inputs

Computing the output of many neurons for many inputs

• In practice, we separate the weights from the bias

1 income0 age0

1 income1 age1

1 income2 age2

1 income3 age3

ΘA0

ΘA1

ΘA2

=
ΘB0

ΘB1

ΘB2

θ0 + θA
1 × income0 + θA

2 × age0 θ0 + θB
1 × income0 + θB

2 × age0

θ0 + θA
1 × income1 + θA

2 × age1 θ0 + θB
1 × income1 + θB

2 × age1

θ0 + θA
1 × income2 + θA

2 × age2 θ0 + θB
1 × income2 + θB

2 × age2

θ0 + θA
1 × income3 + θA

2 × age3 θ0 + θB
1 × income3 + θB

2 × age3

4x3 matrix 4x3 matrix

Batch of 4 inputs
Outputs of the

2 neurons for each of the 4 inputs

Bias of 2 neurons

Weights of 2 neurons

 income0 age0

income1 age1

income2 age2

income3 age3

ΘA1

ΘA2

=ΘB1

ΘB2

θ0 + θA
1 × income0 + θA

2 × age0 θ0 + θB
1 × income0 + θB

2 × age0

θ0 + θA
1 × income1 + θA

2 × age1 θ0 + θB
1 × income1 + θB

2 × age1

θ0 + θA
1 × income2 + θA

2 × age2 θ0 + θB
1 × income2 + θB

2 × age2

θ0 + θA
1 × income3 + θA

2 × age3 θ0 + θB
1 × income3 + θB

2 × age3

4x3 matrix
3x2 matrix

4x3 matrixBatch input (4 inputs)

ΘB0

ΘB0

ΘB0

ΘB0

ΘA0

ΘA0

ΘA0

ΘA0

+ =
Weights matrix 2x2

(2 inputs and 2 neurons)

ΘA0 ΘB0

Bias vectorExpanded to fit
number of input

Computing the output of many neurons for many inputs

Matrix Multiplication

100 50

10 20

2

1
=1

-1

2x2 matrix
2x2 matrix

2x2 matrix

Batch of 2 inputs Weights for
2 neurons

Score outputs of the
2 neurons for each of the 2 inputs

1 0

Bias for
2 neurons

• Important: using these matrix representations only work if all the neurons have
the same input and are fully connected

• Then, in practice, a Fully Connected layer of N neurons with K input can be
represented by a matrix of weights W of shape KxN, and a bias vector b of
dimension N.

Feed-Forward networks with fully connected layers

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1

Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3

Layer 5
Age

Income

Vote

• Then, in practice, a Fully Connected layer of N neurons with K input can
be represented by a matrix of weights W of shape KxN, and a bias vector
b of dimension N.

1 -2 4
3 4 0

-10 5 0

Weights for
layer 2: Bias for layer 2:

1 5 -2 4 1
3 4 0 6 7
5 0 0 3 -1

-10 5 0 1 1

Weights for layer 3: Bias for layer 2:

Yet another visualization

• An interactive Neural Network with Fully Connected Layers

• From some nice people at Google

• https://playground.tensorflow.org

Activations
• Some possible activation functions:

σ(x) =
1

1 + exp(−x)ReLU(x) = max(x,0) tanh(x) = 2σ(2x) − 1 f(x) = x

Rectified Linear Unit Sigmoid
 (a.k.a logistic function)

Hyperbolic Tangent
(= a linear transformation

of the sigmoid)

Linear function
(useless as activation function)

L1 and L2 Regularization

• We have discusses that L2 Regularization can be used for reducing
overfitting

• -> Change Regularization and Regularization Rate to observe the effect
of Regularization

L2 Regularization
• We note |Θ|2 the sum of the square of all parameters Θk (this is called the

“L2 Norm”)

• Then we add this quantity to the loss we want to minimize:

Loss = MeanSquaredError =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Loss =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2 + λ | ⃗θ |2

• Then we apply Gradient Descent to this new loss

L1 Regularization
• We note |Θ|1 the sum of the absolute value of all parameters Θk (this is

called the “L1 Norm”)

• Then we add this quantity to the loss we want to minimize:

Loss = MeanSquaredError =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Loss =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2 + λ | ⃗θ |

• Then we apply Gradient Descent to this new loss

Random restarts

• Because the weights of a neural network are initialized randomly, the
result of a training will change every time we reinitialize the network

• Therefore, to obtain best performances, it is common to train a networks
several times with different random initializations, and keep the best result

• -> Press the reload button to restart a training with new random weight
initialization

Regularization methods for Neural Network

• When we train a network with many neurons, the danger of overfitting is
large

• There are a few technics that are very efficient at preventing this:

• Early Stopping

• Dropout

• Weight Decay

• Stochastic Gradient Descent

Early stopping

• We keep a validation set separate from the training data

• We fix a patience number (typically patience = 10 or 20)

• During training, if we see no improvement on validation set after patience
measures, we stop the training

• Check the evolution of test loss to detect when training should be
stopped

Dropout

• During training, we add random noise to disturb the network

• In practice, we randomly “cut” a certain proportion of connections
(typically 10% to 50%)

• Check the effect of adding noise

Stochastic Gradient Descent

• Instead of computing the gradient of the loss for all the training data, we
compute it for a subsampled part of the training data

• This is actually done anyway to get faster training

• But it is also beneficial to prevent overfitting even if you could afford to
compute the gradient for all the examples at once.

• -> change batch size to observe what happen when we compute
gradient on more or less examples

Input features

• We sae that even for a simple model (like linear regression), adding new
functions of the input can increase the capacity of the model

• -> Add input features and see the effect when there are few neurons

