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Learning a function from examples

 Main idea today: Learning a function from examples

We are given example values of f(x) for some x What would be the value of the function for all x?
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Learning a function from examples

* We might not always want that the function we learn match exactly the examples

e In practice, we might have to consider “imperfect” or “noisy” examples

What we are given:
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Predicting from examples

 This can also be seen as a prediction task

* Given examples of the value of the function, can we predict its value for points not given
in the example?

We predict the value at 3.5 should be -0.45
What we are given:
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Example: influence of smoking on life expectancy

* For a more practical context, let us consider some Health-related situation

* Let us suppose we gathered the data from many persons about:

* How many cigarets they were smoking per day

. (W
* How old they died

* Now, knowing that somebody smokes x cigarets per day, we would like to predict what age he is most likely to die
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Linear regression

* One possible answer is to do a linear regression

 We assume there is a linear relation between loss in life expectancy and number of cigarets smoked

* Noting the life expectancy (or age of death) as age and the number of cigarets smoked as cig, we suppose:
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Linear regression

* The linear regression consist in finding the good values for the parameters

* |n our Machine Learning terminology, we could also say we are “learning” the function
that compute the life expectancy from the number of cigarets smoked
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Linear regression

Age can also be seen as a

Age is a function of 3 variables:

age(0,y,0,,cig) =0, + 0, X cig
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Linear Regression

Linear regression is a common tool in statistics
It can also be seen as a simple Machine Learning task
Point of view is a bit different (exagerating a bit):

In statistics, we are also interested in interpreting the parameters, like the slope of the linear
approximation

 Smoking one additional pack of cigaret is associated with losing 2.5 years of life expectancy

In Machine Learning, we do not care so much about the parameters. We care about the
“predictive” power

e |f | know how many pack of cigarets a person smoke, can | predict what age she will die?
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Linear regression

« How are we going to find the values of the parameters ©p,01 7

* \We need a criterion to evaluate the quality of ©,01.
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Mean Squared Error

 For each example, we consider the error: the distance between the example
and the model predictions
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example and the model predictions
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Mean Squared Error

model predictions

We take the squared error
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Mean Squared Error

* For each example, we consider the error: the distance between the example and the model predictions
* \We take the squared error

* Finally, we take average of the squared error for all examples

1
MeanSquaredError = — - Z (error;)?
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Mean Squared Error

 The mean squared error now gives us a criterion for finding which
parameters are best
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Minimizing the Mean Squared Error

age = 0, + 0, X cig

« Now, we know what we want: we want to find ©9,01 such that the Mean
Squared error is the smallest possible
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Supervised Learning

: : Learn by
* In supervised learning, we minimizing

usually have: this

Loss

* AMODEL: a “parameterized”
function that takes input and
produce output
Correct
e A Loss: A function that Output
compute how different the Examples

model output is from the Nput  megp  MODEL > Model

correct output Output
Parameters

« Examples of input and
correct output



Supervised Learning

: : Learn by
* In supervised learning, we minimizing
usually have: this

MEAN
« AMODEL: a “parameterized” SQUARED
function that takes input and ERROR
produce output
A Loss: A function that Age of death
compute how different the Examples
model output is from the Number of memep REQression sl Prediction
correct output cigarets model
smoked
Parameters
« Examples of input and ©0,01

correct output , ,
agey o (cig) = 6y + 0, X cig



Minimizing the Mean Squared Error

 \We saw one method for “easily” minimizing a function: gradient descent
 We can apply it here

* We need to express the Mean Squared Distance as a function of ©g,0
d = . 2
MeanSquaredError = ~ : Z (f(x) —y)

Xi: number of cigarets smoked by person i
yi: age person i died
f(xi): prediction of our model
N: total number of persons in our data

(just a rewriting of our model:)

with  f(x,) =60, + 0, X x; age = 0, + 0, X cig



Minimizing the Mean Squared Error

* Therefore, the Mean Squared Distance as a function of ©¢,01 is;

1
MeanSquaredError(6,, 0,) = N - Z (Oy+ 0 X x; — yi)2

 What is the gradient?



Minimizing the Mean Squared Error

1
MeanSquaredError(6,, 0,) = IR Z (O + 0, X x; — y,)°

 What is the gradient?



Minimizing the Mean Squared Error

1
MeanSquaredError(6,, 0,) = IR Z (O + 0, X x; — y,)°

 What is the gradient?

2
N-Z(H()wlxxi—yi)

2
N'inx(eO_l'elxxi_yi)



Gradient Descent for Linear Regression

 Knowing the gradient, what would be the formula for the gradient descent
update”?

2
N'Z(QO_I'Hlxxi_yi)

2
N'inx(‘go_l_‘glxxi_%’)




Gradient Descent for Linear Regression

 Knowing the gradient, what would be the formula for the gradient descent
update”?

2
N-Zwowlxxi—y»

2
0, := Ho—lrxﬁ-2(6’0+«91><xi—yi)

2
N'inx(90+91><xi—)’i)

2
0, := Hl—lrxﬁ-inx(6’0+«91><xi—yl-)

l




Gradient Descent for Linear Regression

MeanSquaredError(6,, 0,) = z Oy + 0, X x; — y,)°

2
0, := Hl—lrxﬁ-inx(6’0+:91><xi—yi)

l

Let us start with Q9,01 =0, Ir=0.1

MSE0,0) =7

Our data:
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Gradient Descent for Linear Regression

MeanSquaredError(6,, 0,) = z Oy + 0, X x; — ) daily age of

cigarets death

________________________________________________________________
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Let us start with 00,01 =0, Ir=0.1 l 17.0 85
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Gradient Descent for Linear Regression

|
MeanSquaredError(0,, 0,) = N . Z (Oy+ 0 X x; — yl-)2
2
0o 1= 0= Irx = ;(90+6’1 X X; — V)

2
0, := Hl—lrxﬁ-inx(90+6’1><xi—yi)

]
Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?

Our data:

dailyé age of
cigarets death
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70 88
170 85




Gradient Descent for Linear Regression

2 dailyé age of

Oy = Oy — Ir X N ' Z (O + 0 X X; = y) cigaretsé death

i R R

2 320 73

91 = 91 — lr X N . Z xi X (00 + 91 X .xl- — yl) -------------------------------

’ 7.0 88

Let us start with 00,01 =0, Ir=0.1 T
17.0 85

)
=0y = Irx =+ (0+0x32-73)+ (0+0x7 —88) +(0+0x 17 - 85) = 16.4

)
0:=0, = Irx =+ (32X (0 +0x32=73)+TX (0+0x7 - 88) + 17 x (0+0x 17 - 85)) = 293.1

Instead, choose an example at random (ie. Person 2)

Oy =0)—Ilrx2-(0+0Xx7-2388)) =17.6 0, =0, —lrx2-(7TXO+0xX7—-388)) =123




Gradient Descent for Linear Regression

Our data:

1
MeanSquaredError(6,y,0,) = — - Z Oy + 0; X x; — y,)°

dailyé age of

N i cigarets death

2 R

0, := eO—zrxN-Z(eowlxx,.—yi) 2ol 72
7 S——

| 2 7.0 88
0:= 0, = Irx = Z x; X (B + 0) X x; = ;) -
17.0 385

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?

YES! (provided the learning rate is decreased over time:
it is Stochastic Gradient Descent)



Stochastic Gradient Descent

* Stochastic gradient descent says that we can replace the average of the gradient
over all examples by the gradient given by a randomly chosen example

* Slower Convergence
* But if we have one million examples: one million times faster to compute!

2
‘903:‘90—17'XN‘2(6'04“91)(3%—)’1') q

l

Choose example i randomly

* |n practice, we often average over a few examples (instead of just one).
This Is called mini-batch gradient descent



Linear Regression: other methods

 Because Linear Regression is a very simple form of Machine Learning (we model data with a simple function),
there are methods more direct to minimize the Mean Squared Distance (eg. Normal Equations)

 However, for many equations and many variables, Stochastic Gradient Descent can still be the most efficient
solution

* There are many existing implementations of Linear Regression, so in practice you would not need to do the
gradient descent by yourself anyway

* For example, in python, we can use the function linregress in the package stats of the library spicy:

In [1061]: from scipy import stats

In [1062]: stats.linregress(daily cig smoked, life expectancy)

Out[1062]: LinregressResult(slope=-0.710478500965002, intercept=92.29875345880524, rvalue=-0.8609731
085193286, pvalue=1.0335137971251332e-09, stderr=0.07932348624135113)



Training a Linear Regression Model

e Jupyter Notebook:

» https://colab.research.google.com/drive/
18zP8dLYTg6QQMNNIaoQIA z3bH57v1QO

+ http://bit.ly/2IRJGS2


https://colab.research.google.com/drive/18zP8dLYTg6QQmNNIaoQlA_z3bH57v1QO
https://colab.research.google.com/drive/18zP8dLYTg6QQmNNIaoQlA_z3bH57v1QO

Next

e What if | have more than one variable | want to use?

* eg. Using Daily number of cigarets, weight, BMI index and sport activity to predict age of
death

 What if | want to learn a function more complex than a linear function?

* We will see that next time. But we will see that in practice the process is always the same:
* Define the model
* Define the loss

Do a gradient descent on the loss



