Learning Simple Functions I

Fundamentals of Artificial Intelligence Fabien Cromieres Kyoto University

Learning a function from examples

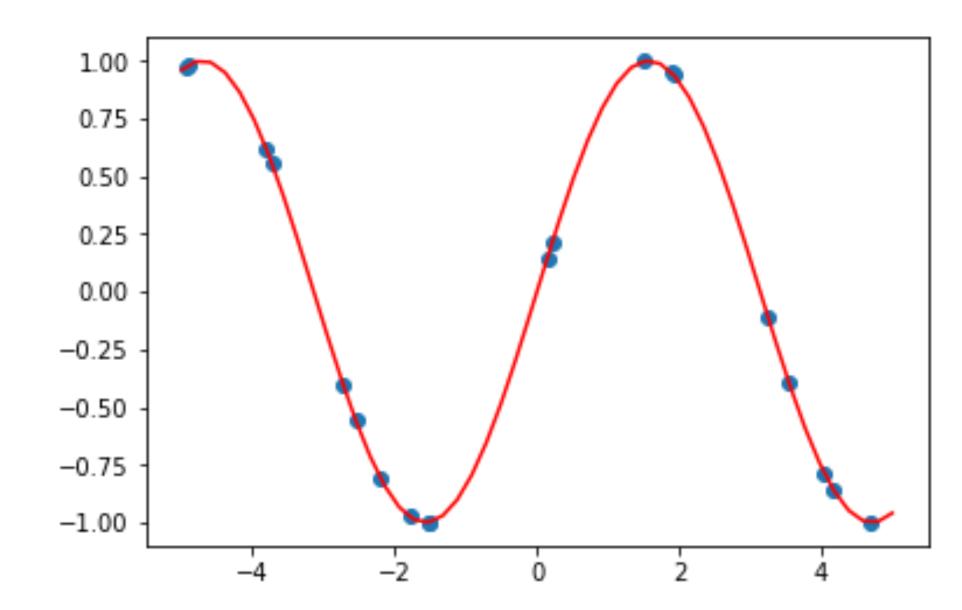
Learning

Main idea today: Learning a function from examples

We are given example values of f(x) for some x

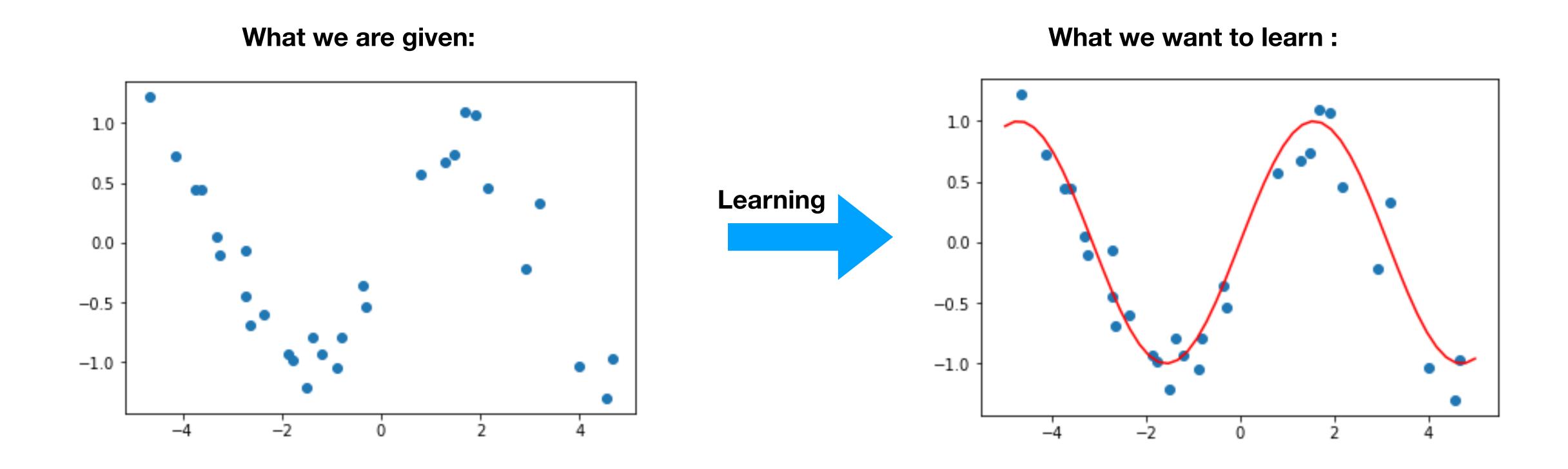
f(x) 1.00 0.182204 -3.324820 0.75 1.294681 0.962122 0.50 0.25 0.841473 -4.141596 0.00 2.928655 -0.25-2.374387 -0.694126 4.555678 -0.987746 -1.00.

What would be the value of the function for all x?



Learning a function from examples

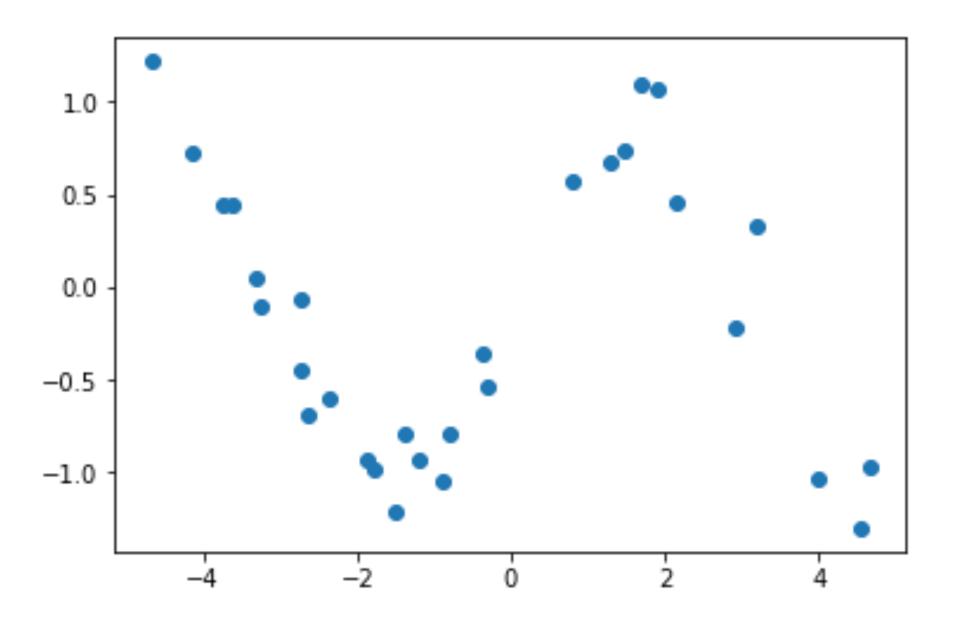
- We might not always want that the function we learn match exactly the examples
- In practice, we might have to consider "imperfect" or "noisy" examples



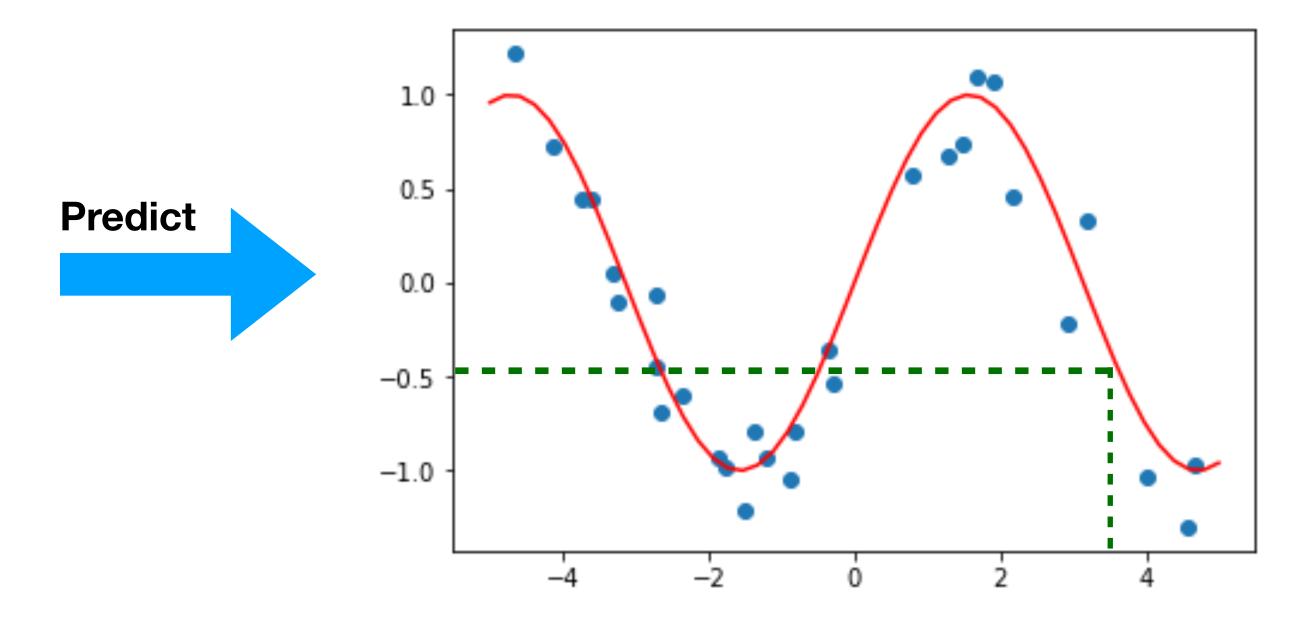
Predicting from examples

- This can also be seen as a prediction task
- Given examples of the value of the function, can we predict its value for points not given in the example?

What we are given:



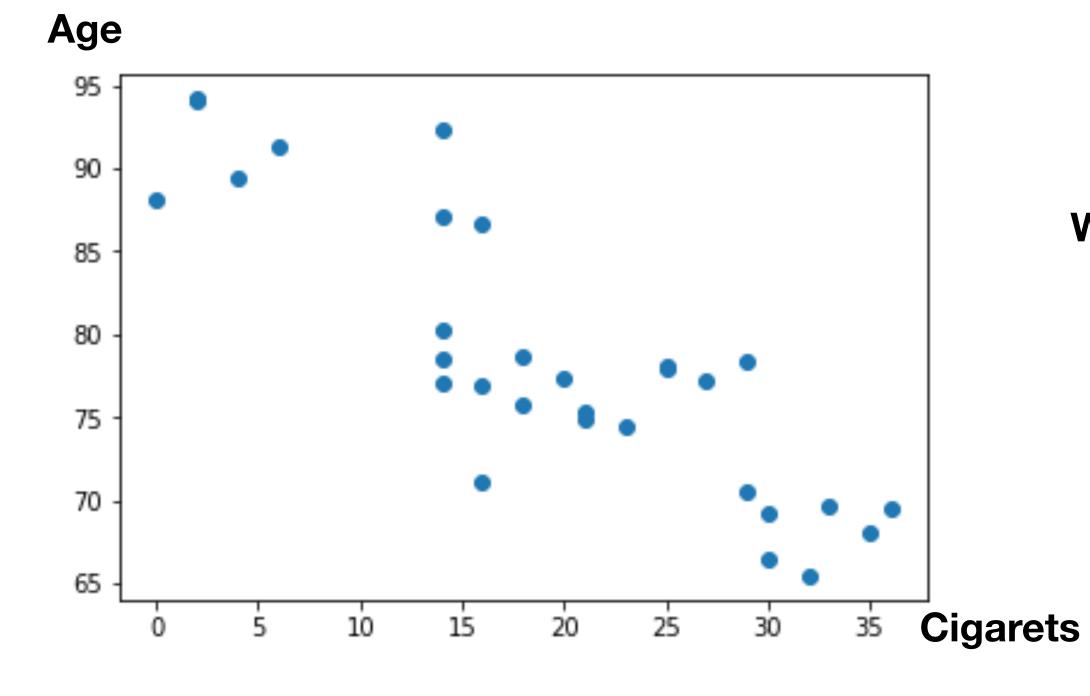
We predict the value at 3.5 should be -0.45



Example: influence of smoking on life expectancy

- For a more practical context, let us consider some Health-related situation
- Let us suppose we gathered the data from many persons about:
 - How many cigarets they were smoking per day
 - How old they died
- Now, knowing that somebody smokes x cigarets per day, we would like to predict what age he is most likely to die

daily cigarets	age of death
32.0	73.471399
7.0	88.237207
30.0	82.077261
17.0	85.576741
27.0	76.190373
15.0	84.899030
20.0	72.598501
28.0	77.018773



What age am I most likely to die if I smoke 10 cigarets per days?

- One possible answer is to do a *linear regression*
- We assume there is a *linear relation* between loss in life expectancy and number of cigarets smoked
- Noting the life expectancy (or age of death) as age and the number of cigarets smoked as cig, we suppose:

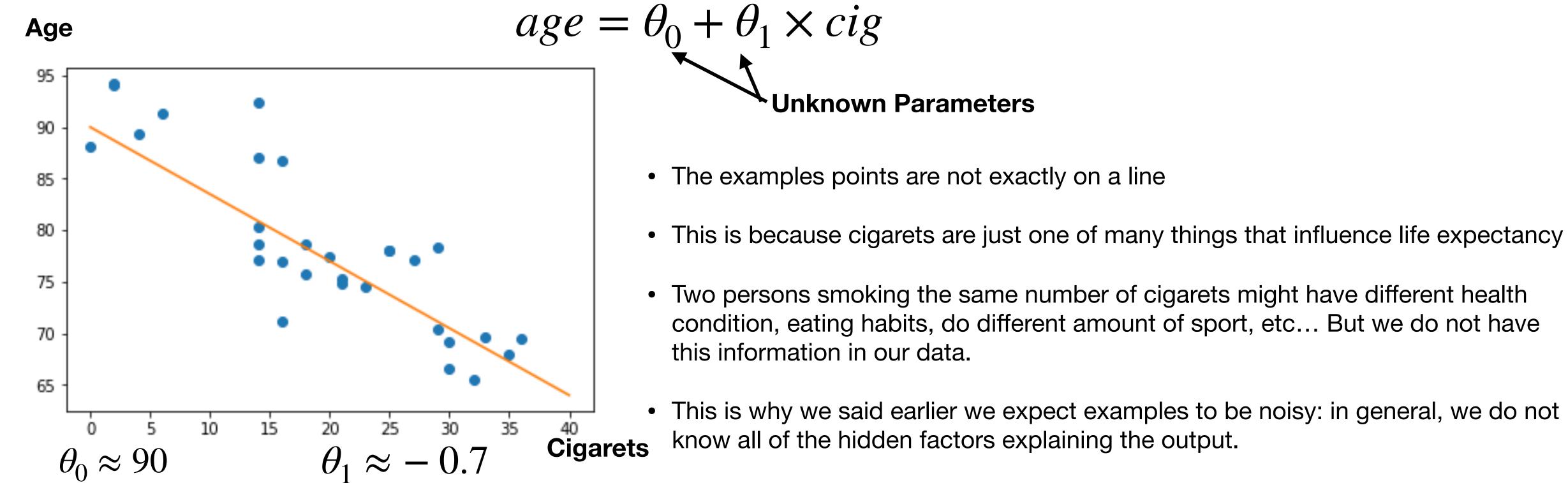
this information in our data.

Unknown Parameters

know all of the hidden factors explaining the output.

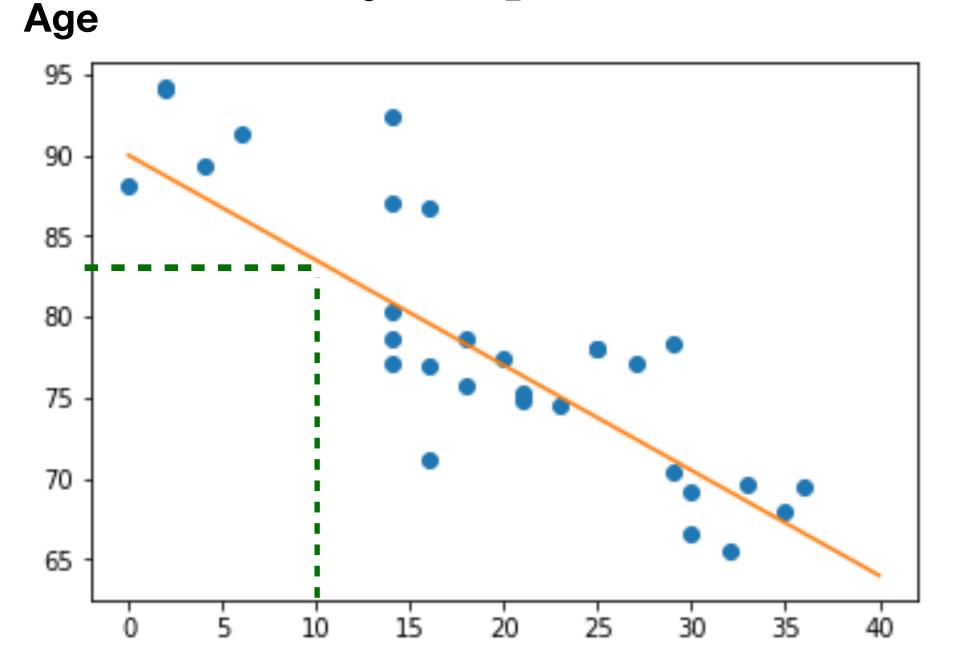
condition, eating habits, do different amount of sport, etc... But we do not have

This is why we said earlier we expect examples to be noisy: in general, we do not



- The linear regression consist in finding the good values for the parameters
- In our Machine Learning terminology, we could also say we are "learning" the function that compute the life expectancy from the number of cigarets smoked

$$age = \theta_0 + \theta_1 \times cig$$



$$\theta_0 \approx 90$$

$$\theta_0 \approx 90$$
 $\theta_1 \approx -0.7$

- Now, we can make our prediction:
- What age am I most likely to die if I smoke 10 cigarets per day?
 - 90-0.7x10 = 83 year old

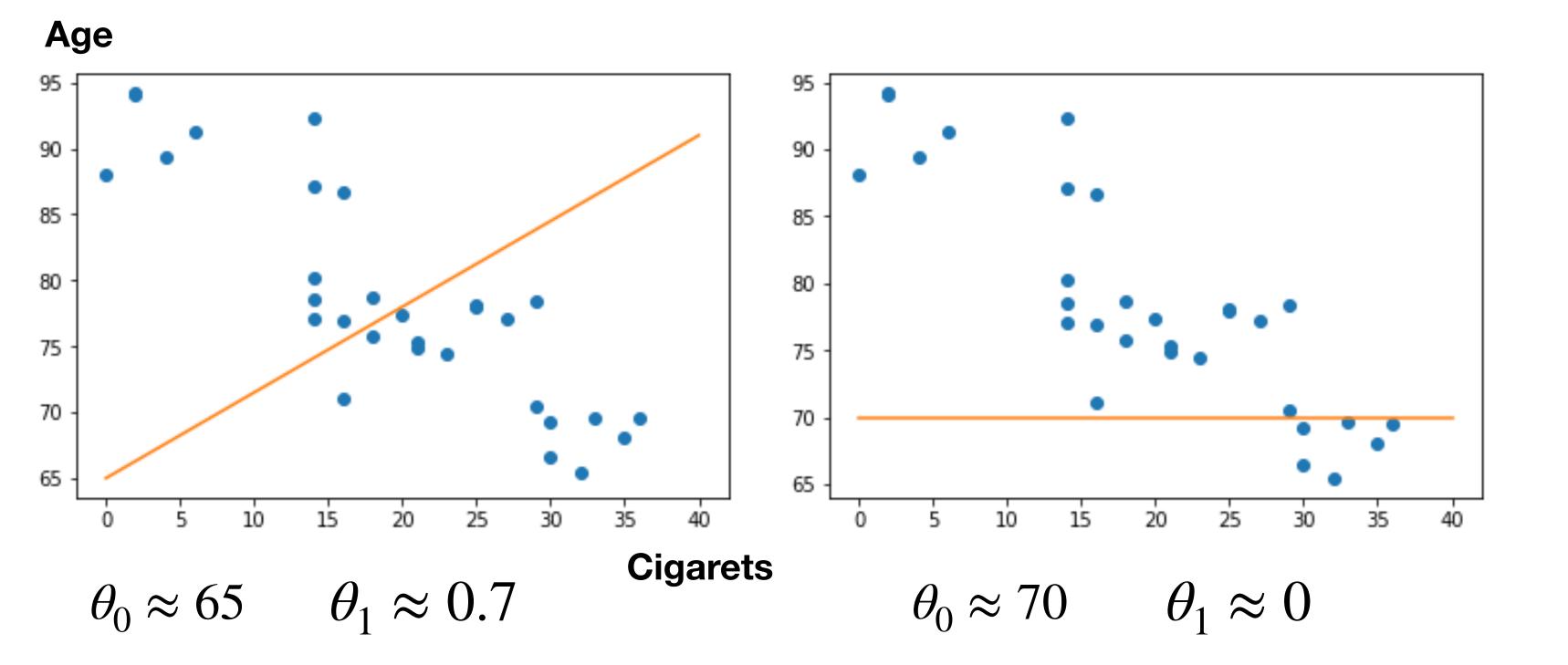
Cigarets

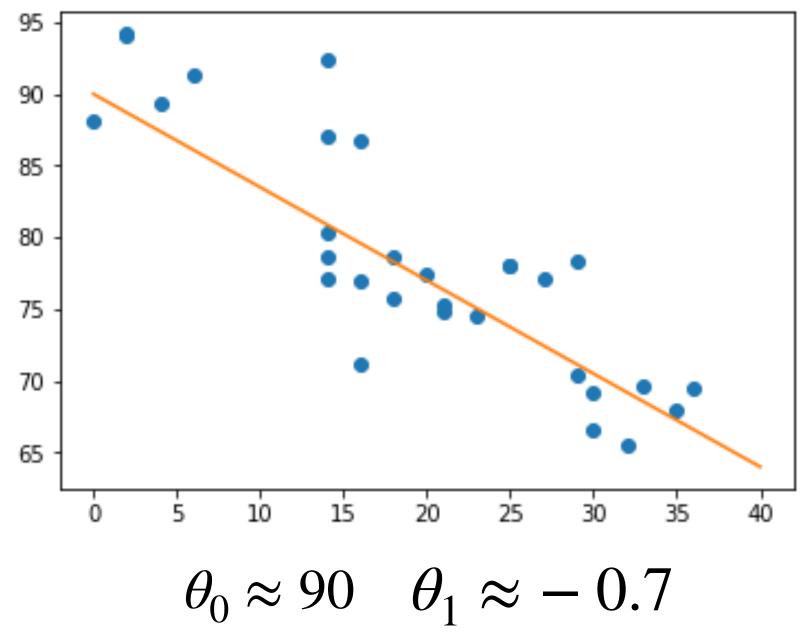
Age is a function of 3 variables:

$$age(\theta_0, \theta_1, cig) = \theta_0 + \theta_1 \times cig$$

Age can also be seen as a parameterized function of one variable:

$$age_{\theta_0,\theta_1}(cig) = \theta_0 + \theta_1 \times cig$$





What age am I most likely to die if I smoke 10 cigarets per day?

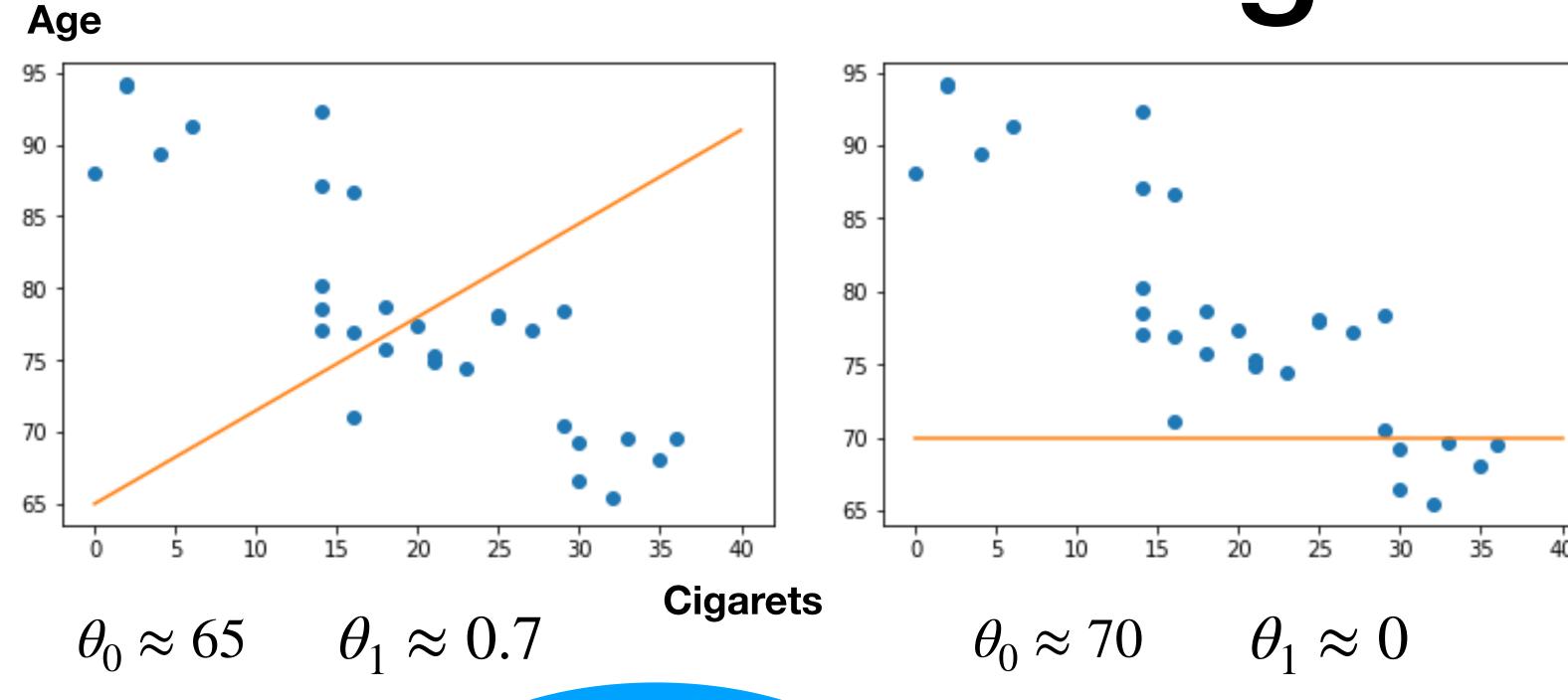
72 y.o.

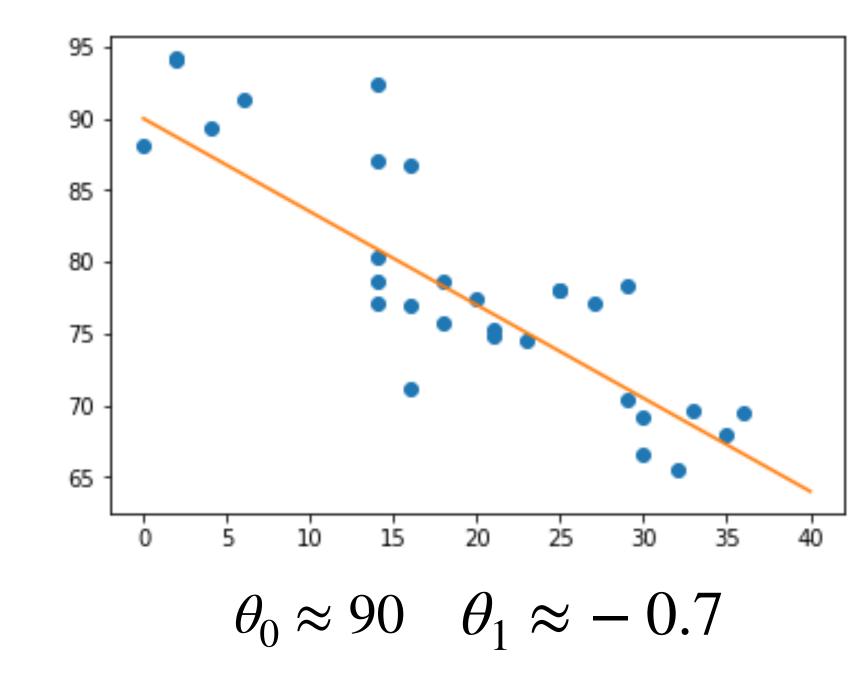
70 y.o.

83 y.o.

- Linear regression is a common tool in statistics
- It can also be seen as a simple Machine Learning task
- Point of view is a bit different (exagerating a bit):
- In statistics, we are also interested in <u>interpreting the parameters</u>, like the slope of the linear approximation
 - Smoking one additional pack of cigaret is associated with losing 2.5 years of life expectancy
- In Machine Learning, we do not care so much about the parameters. We care about the <u>"predictive" power</u>
 - If I know how many pack of cigarets a person smoke, can I predict what age she will die?

 $age = \theta_0 + \theta_1 \times cig$



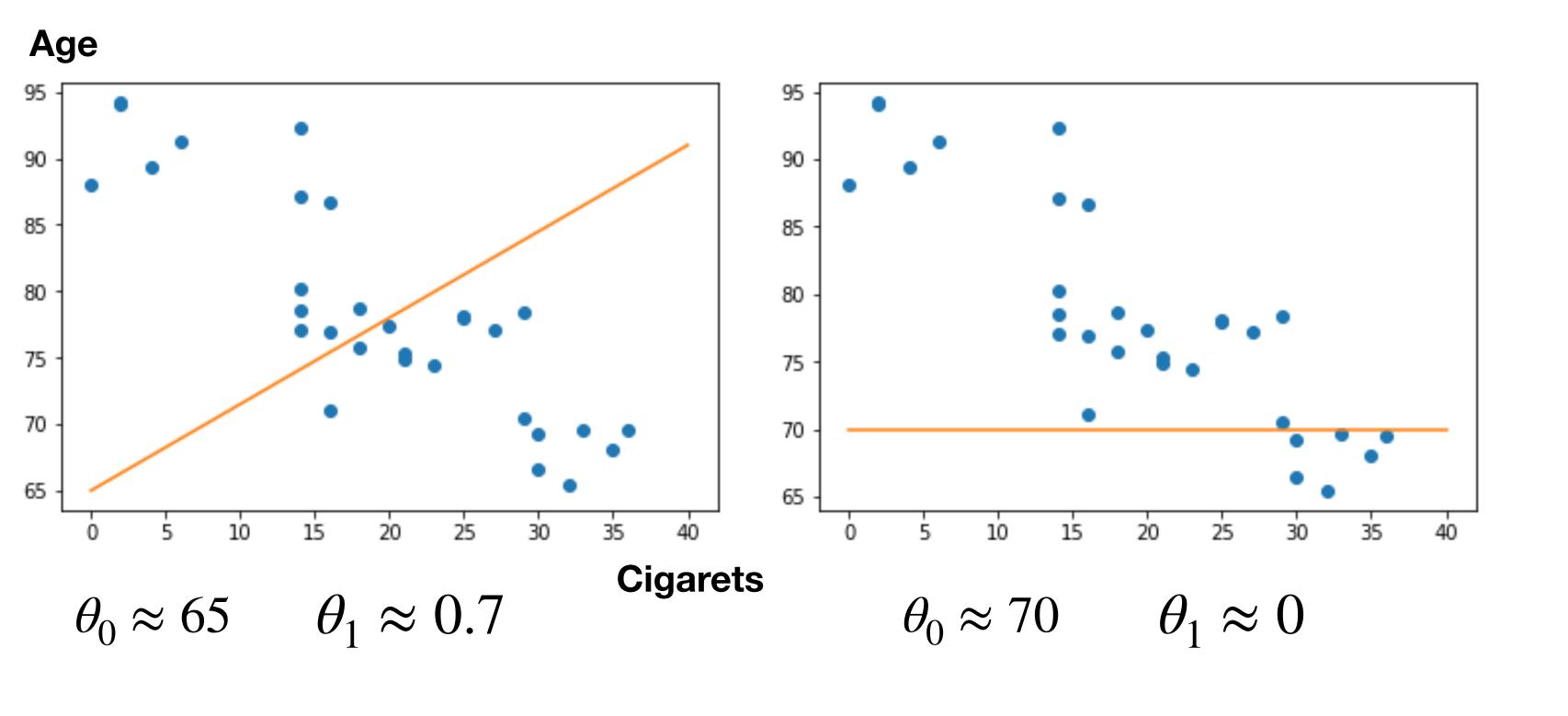


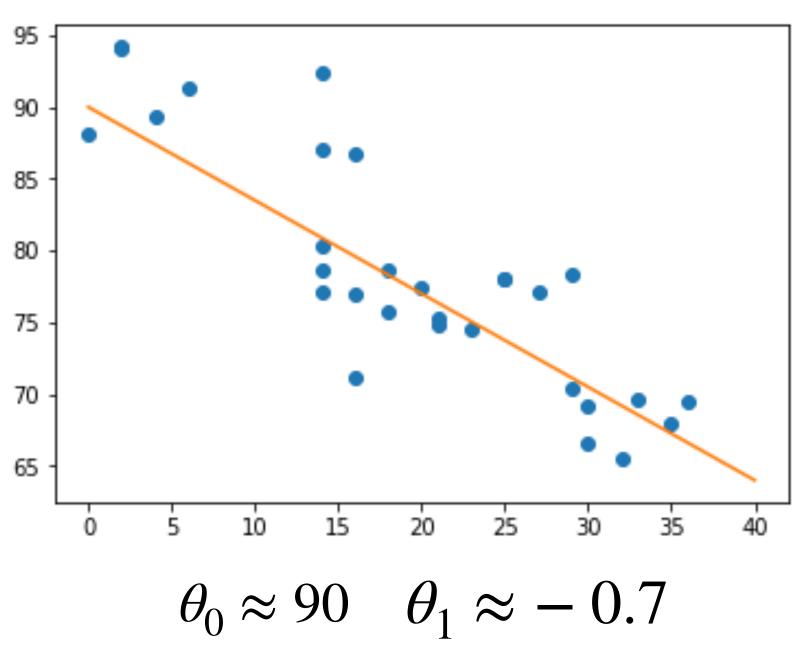
So, which one is best?

How to know which values of the parameters Θ_0 , Θ_1 we should use?

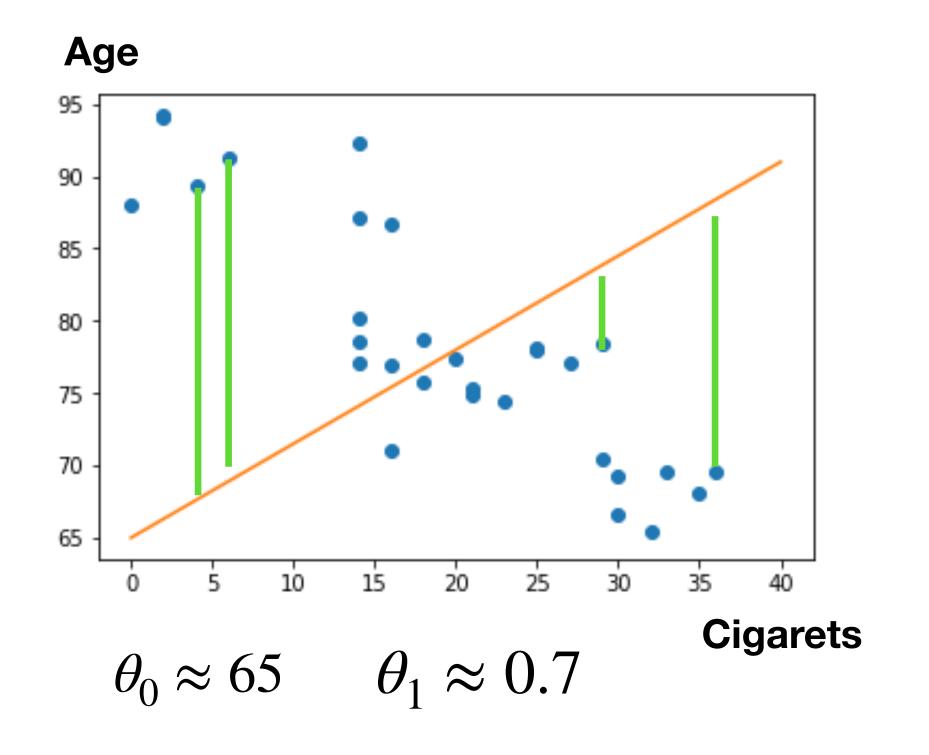
- How are we going to find the values of the parameters Θ_0,Θ_1 ?
- We need a criterion to evaluate the quality of Θ_0,Θ_1 .

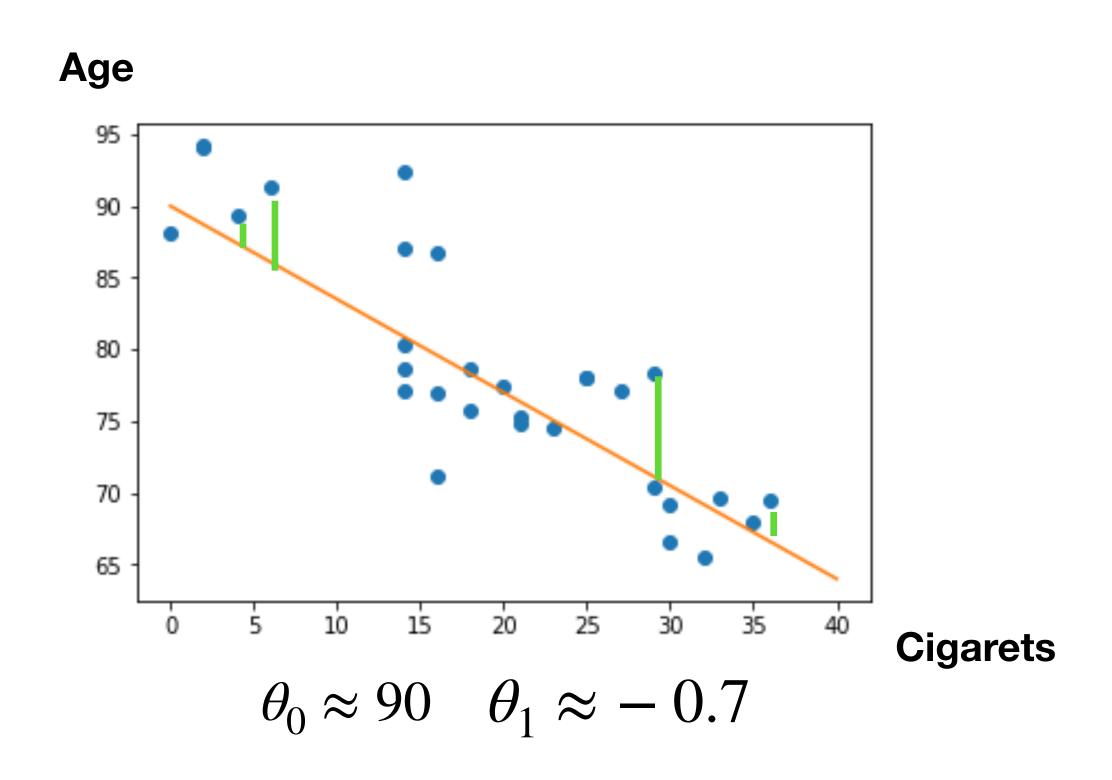
$$age = \theta_0 + \theta_1 \times cig$$



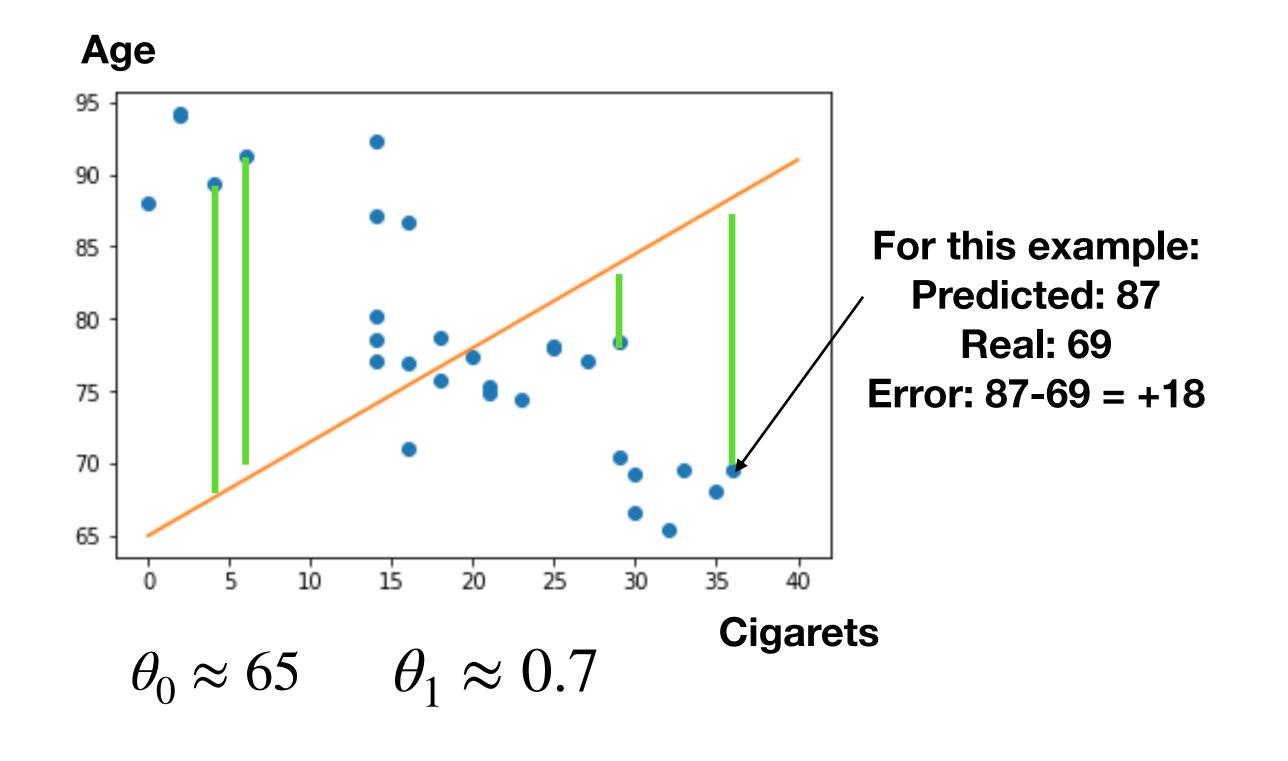


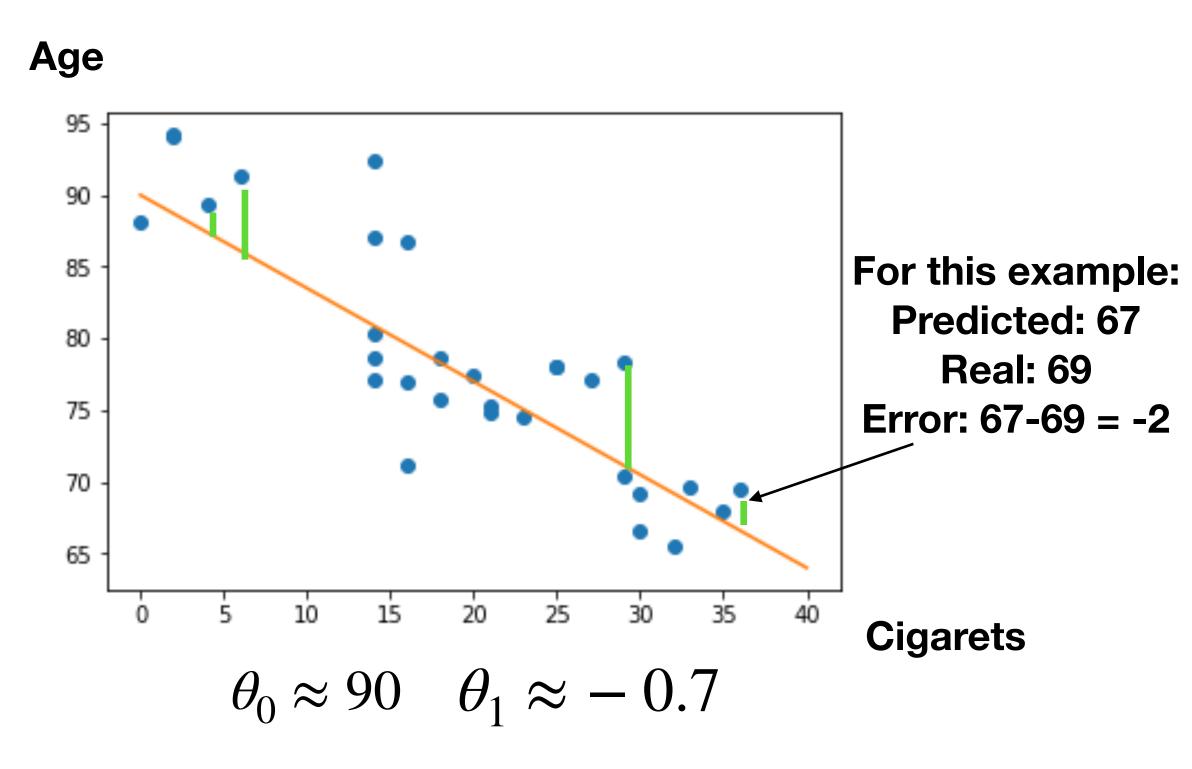
 For each example, we consider the error: the distance between the example and the model predictions



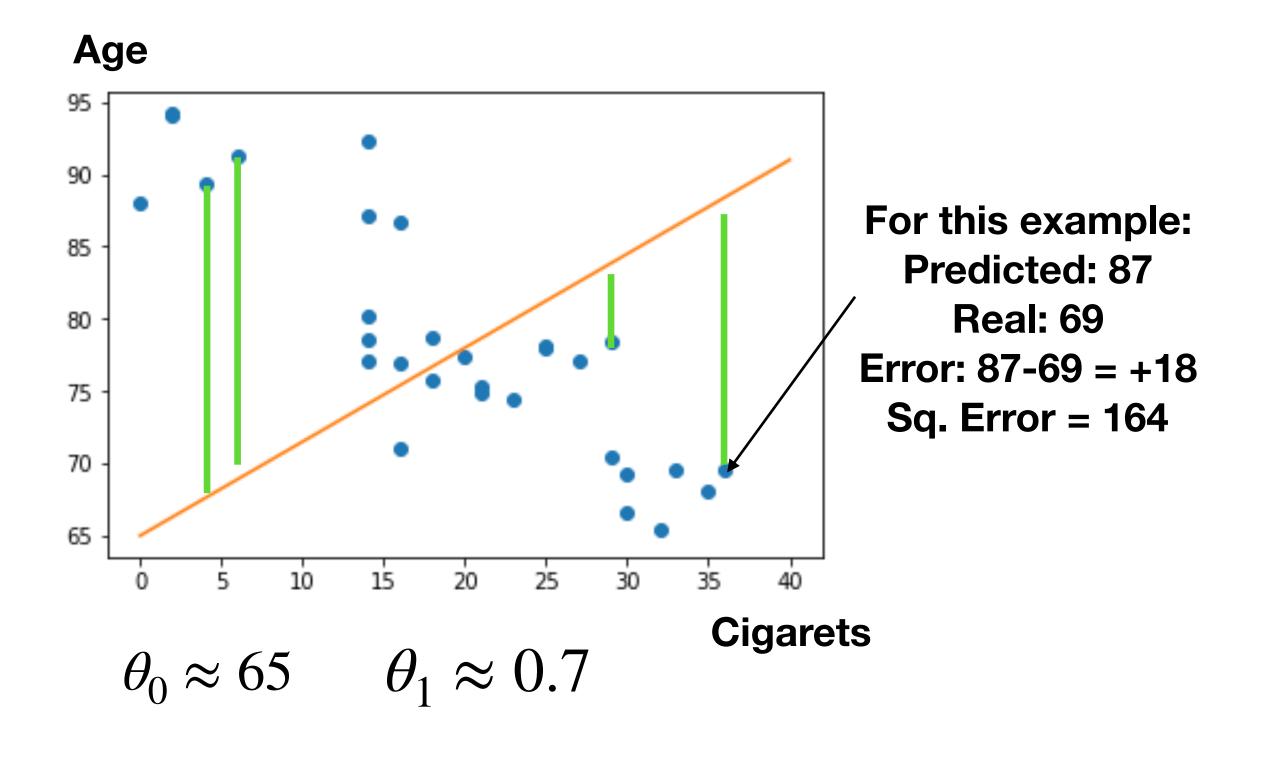


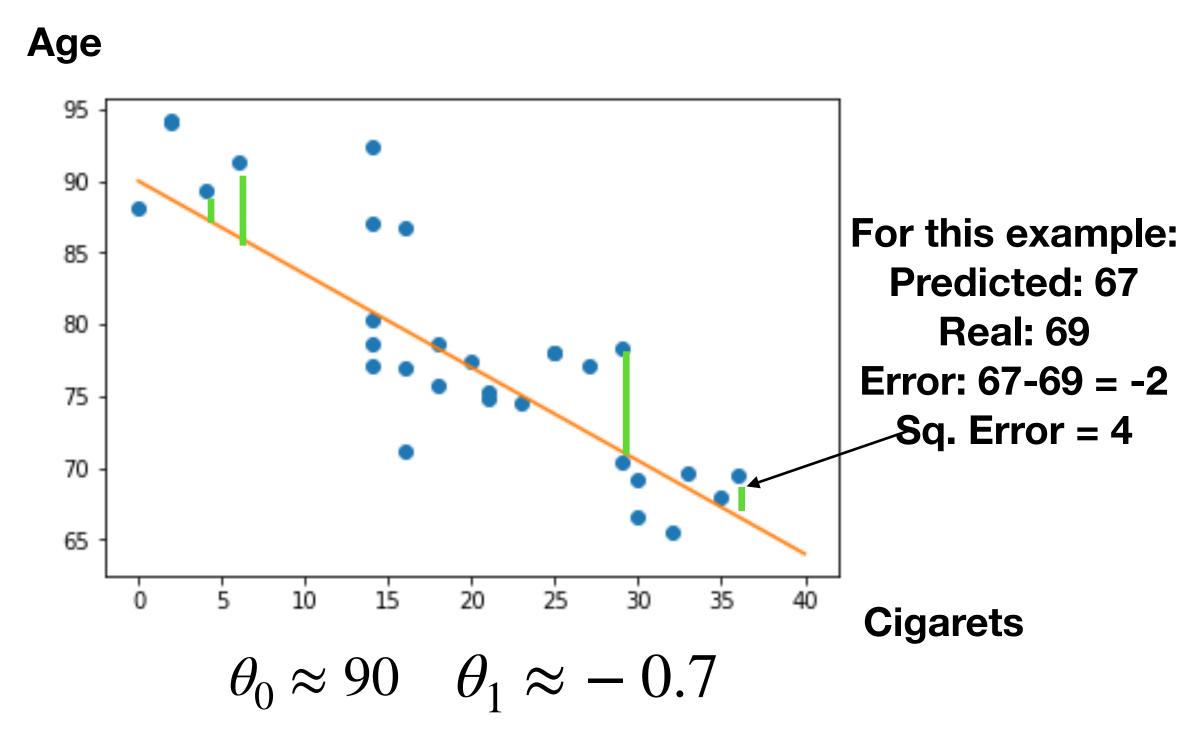
 For each example, we consider the error: the distance between the example and the model predictions



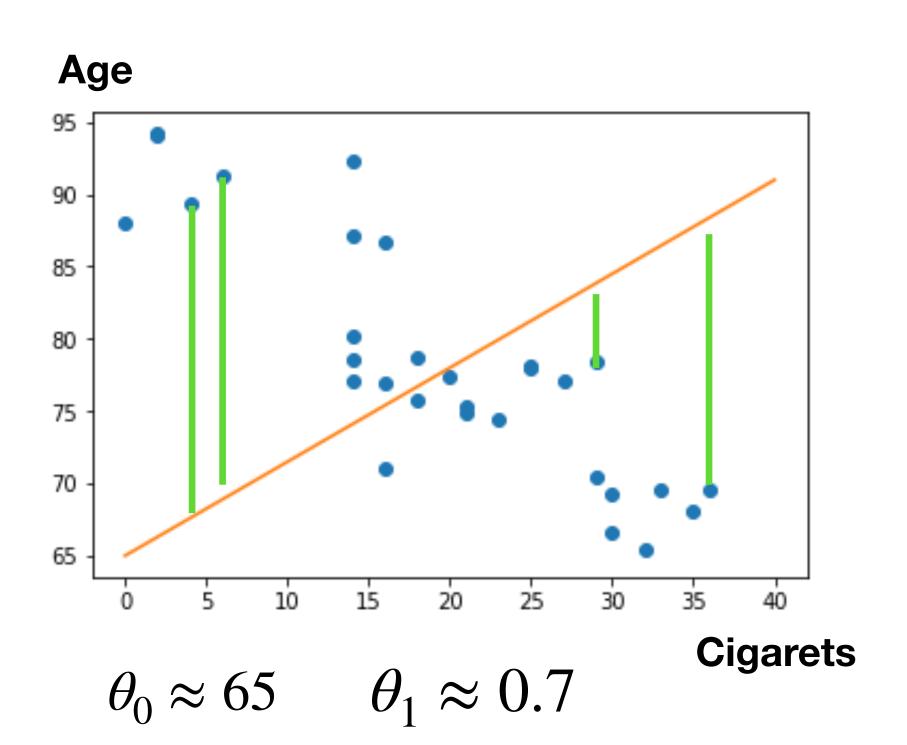


- For each example, we consider the *error*: the distance between the example and the model predictions
- We take the squared error





- For each example, we consider the error: the distance between the example and the model predictions
- We take the squared error
- Finally, we take **average** of the squared error for **all examples**



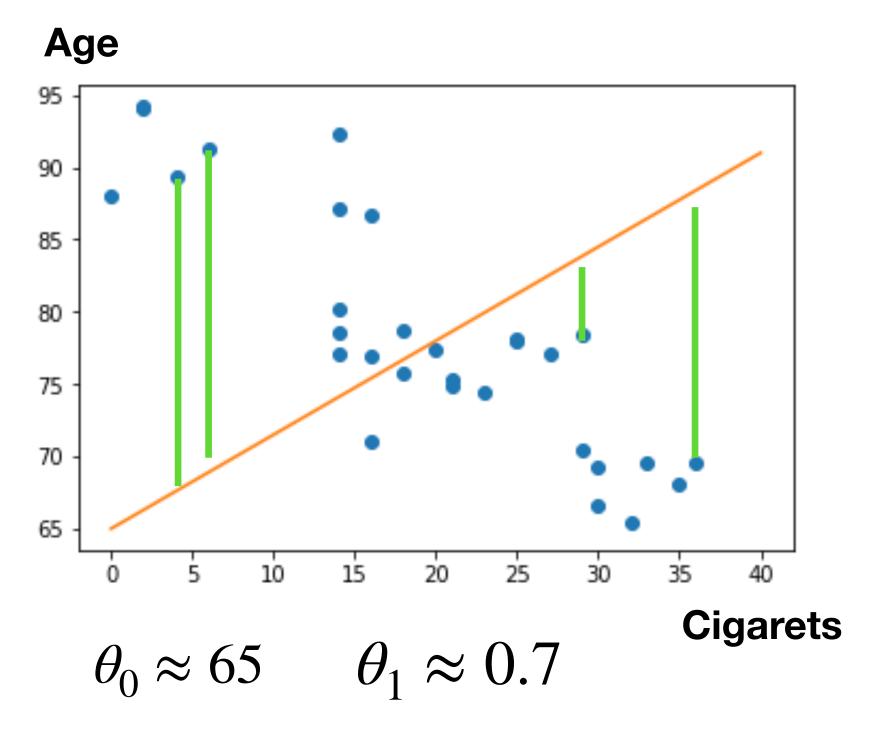
$$MeanSquaredError = \frac{1}{N} \cdot \sum_{i} (error_{i})^{2}$$

$$MeanSquaredError = \frac{1}{N} \cdot \sum_{i} (f(x_{i}) - y_{i})^{2}$$

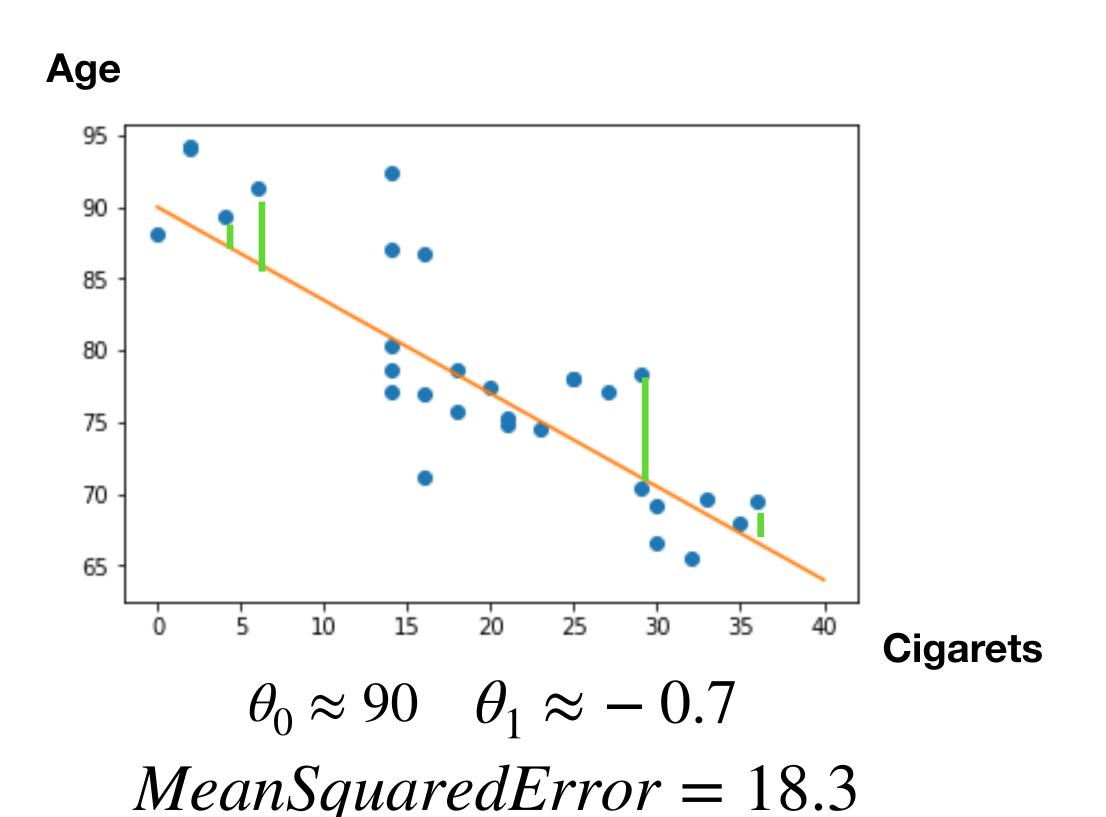
N: total number of examples
x_i: number of cigarets smoked by person i
y_i: age person i died
f(x_i): prediction of our model

In our case: $f(x_i) \sim age_{\theta_0,\theta_1}(cig)$

 The mean squared error now gives us a criterion for finding which parameters are best

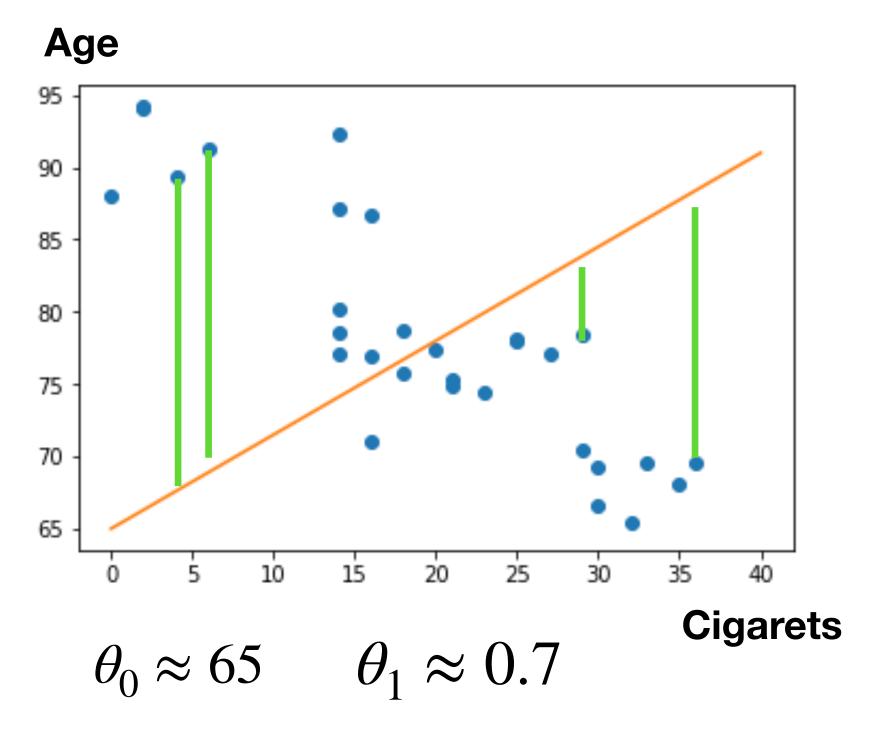


Mean Squared Error = 294.7

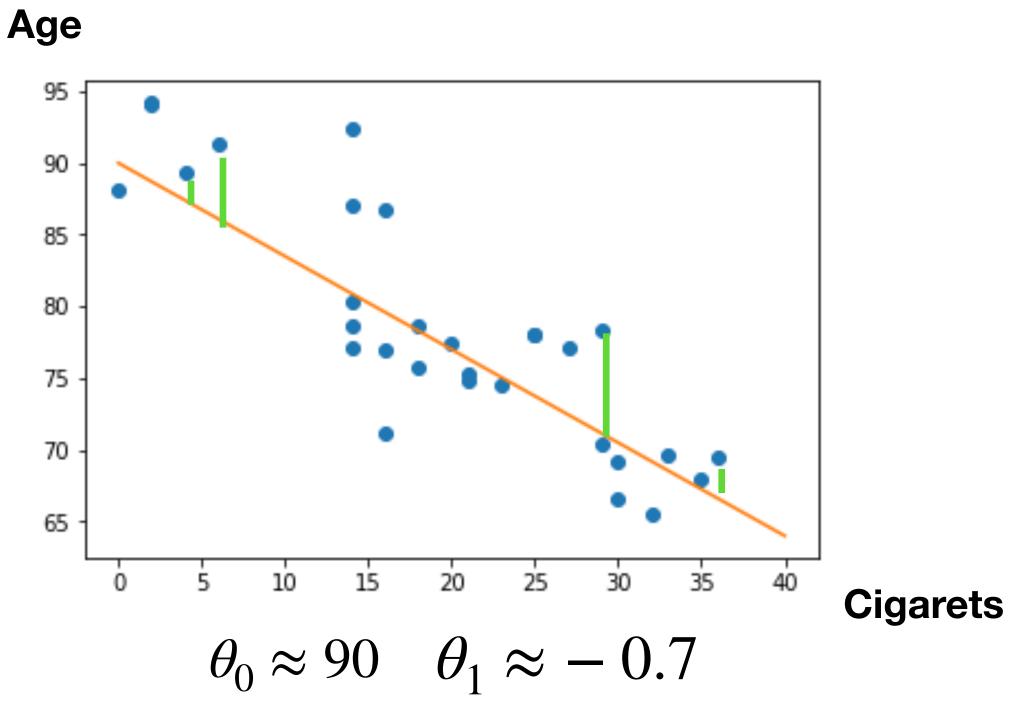


$$age = \theta_0 + \theta_1 \times cig$$

• Now, we know what we want: we want to find Θ_0 , Θ_1 such that the Mean Squared error is the smallest possible



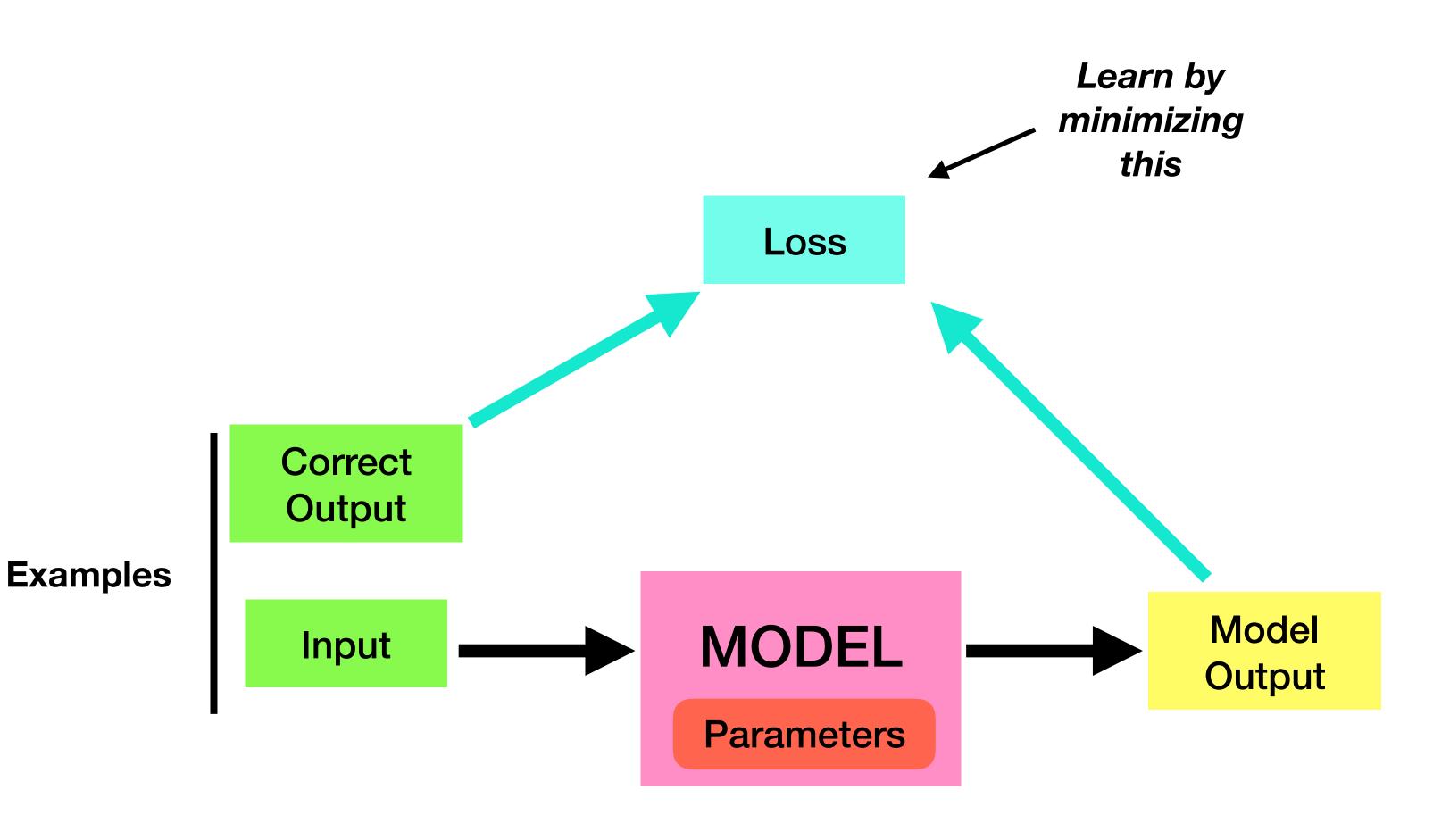
Mean Squared Distance = 294.7



Mean Squared Distance = 18.3

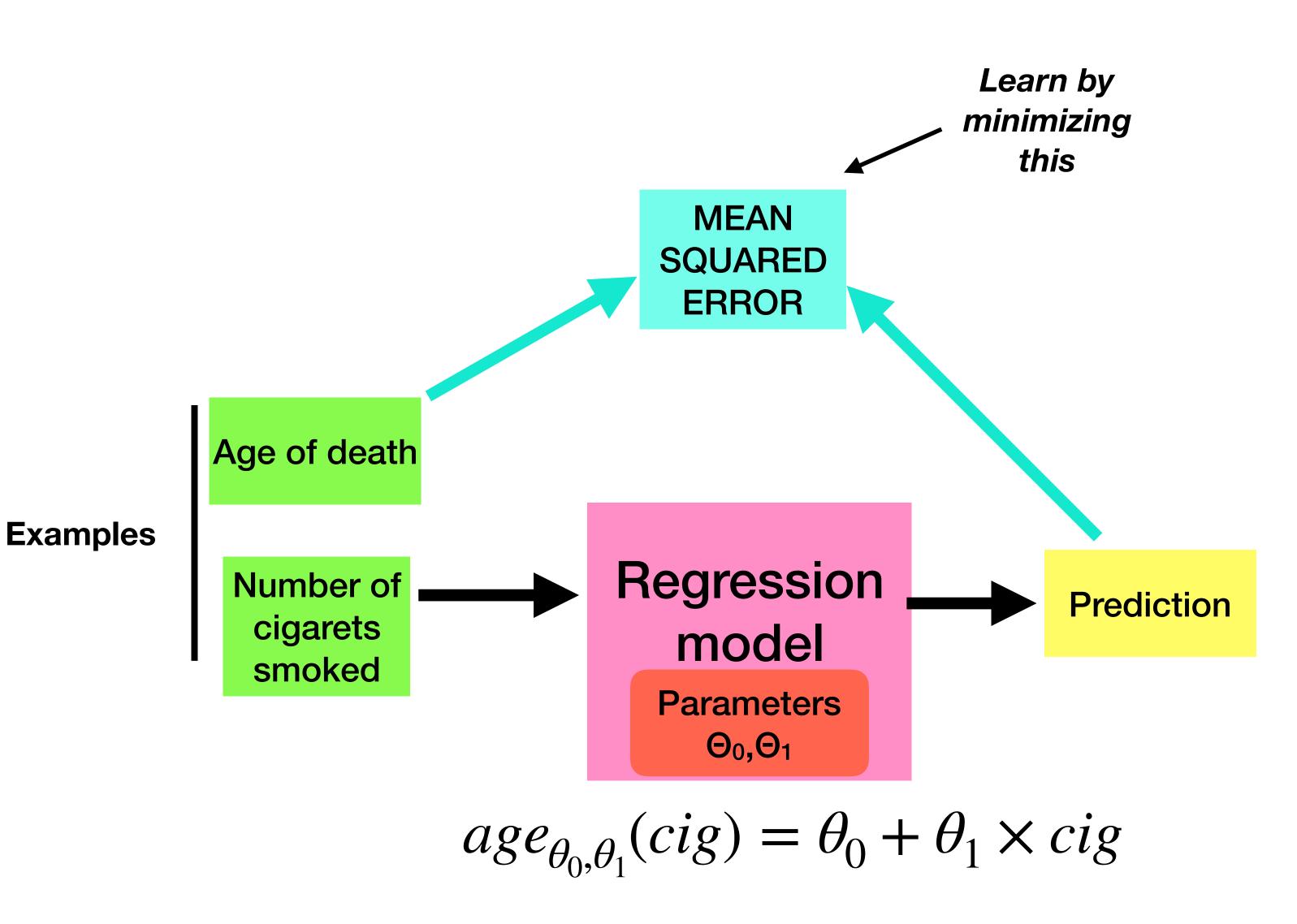
Supervised Learning

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



Supervised Learning

- In supervised learning, we usually have:
 - A MODEL: a "parameterized" function that takes input and produce output
 - A Loss: A function that compute how different the model output is from the correct output
 - Examples of input and correct output



- We saw one method for "easily" minimizing a function: gradient descent
- We can apply it here
- We need to express the Mean Squared Distance as a function of Θ_0,Θ_1

$$MeanSquaredError = \frac{1}{N} \cdot \sum_{i} (f(x_i) - y_i)^2$$

x_i: number of cigarets smoked by person i
y_i: age person i died
f(x_i): prediction of our model
N: total number of persons in our data

With
$$f(x_i) = \theta_0 + \theta_1 \times x_i$$

(just a rewriting of our model:)

$$age = \theta_0 + \theta_1 \times cig$$

• Therefore, the Mean Squared Distance as a function of Θ_0,Θ_1 is:

$$MeanSquaredError(\theta_0, \theta_1) = \frac{1}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)^2$$

What is the gradient?

$$MeanSquaredError(\theta_0, \theta_1) = \frac{1}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)^2$$

What is the gradient?

$$MeanSquaredError(\theta_0, \theta_1) = \frac{1}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)^2$$

What is the gradient?

$$\frac{2}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)$$

$$\frac{2}{N} \cdot \sum_{i} x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

 Knowing the gradient, what would be the formula for the gradient descent update?

$$\theta_0 := ?$$

$$\theta_1 := ?$$

$$\frac{2}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)$$

$$\frac{2}{N} \cdot \sum_{i} x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

 Knowing the gradient, what would be the formula for the gradient descent update?

$$\theta_0 := \theta_0 - lr \times \frac{2}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i)$$

$$\frac{2}{N} \cdot \sum_{i} \left(\theta_0 + \theta_1 \times x_i - y_i\right)$$

$$\frac{2}{N} \cdot \sum_{i} x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

$$\theta_1 := \theta_1 - lr \times \frac{2}{N} \cdot \sum_i x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

$$MeanSquaredError(\theta_0, \theta_1) = \frac{1}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)^2$$

$$\theta_0 := \theta_0 - lr \times \frac{2}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i)$$

$$\theta_1 := \theta_1 - lr \times \frac{2}{N} \cdot \sum_i x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

Let us start with $\Theta_0,\Theta_1=0$, Ir=0.1

$$MSE(0,0) = ?$$

$$\theta_0 := \theta_0 - ?$$

$$\theta_1 := \theta_1 - ?$$

Our data:

age of death
73
88
85

$$MeanSquaredError(\theta_0, \theta_1) = \frac{1}{N} \cdot \sum_{i} (\theta_0 + \theta_1 \times x_i - y_i)^2$$

$$\theta_0 := \theta_0 - lr \times \frac{2}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i)$$

daily

17.0

cigarets

age of

death

$$\theta_1 := \theta_1 - lr \times \frac{2}{N} \cdot \sum_i x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

Let us start with $\Theta_0,\Theta_1=0$, Ir=0.1

$$MSD(0,0) = \frac{1}{3} \cdot ((0+0\times32-73)^2 + (0+0\times7-88)^2 + (0+0\times17-85)^2) = 6766$$

$$\theta_0 := \theta_0 - lr \times \frac{2}{3} \cdot ((0 + 0 \times 32 - 73) + (0 + 0 \times 7 - 88) + (0 + 0 \times 17 - 85)) = 16.4$$

$$\theta_1 := \theta_1 - lr \times \frac{2}{3} \cdot (32 \times (0 + 0 \times 32 - 73) + 7 \times (0 + 0 \times 7 - 88) + 17 \times (0 + 0 \times 17 - 85)) = 293.1$$

$$\begin{aligned} \textit{MeanSquaredError}(\theta_0, \theta_1) &= \frac{1}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i)^2 \\ \theta_0 &:= \theta_0 - lr \times \frac{2}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i) \\ \theta_1 &:= \theta_1 - lr \times \frac{2}{N} \cdot \sum_i x_i \times (\theta_0 + \theta_1 \times x_i - y_i) \end{aligned}$$

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?

Our data:

daily cigarets	age of death
32.0	73
7.0	88
17.0	85

$$\theta_0 := \theta_0 - lr \times \frac{2}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i)$$

$$\theta_1 := \theta_1 - lr \times \frac{2}{N} \cdot \sum_i x_i \times (\theta_0 + \theta_1 \times x_i - y_i)$$

Let us start with $\Theta_0,\Theta_1=0$, Ir=0.1

$$\theta_0 := \theta_0 - lr \times \frac{2}{3} \cdot ((0 + 0 \times 32 - 73) + (0 + 0 \times 7 - 88) + (0 + 0 \times 17 - 85)) = 16.4$$

$$\theta_1 := \theta_1 - lr \times \frac{2}{3} \cdot (32 \times (0 + 0 \times 32 - 73) + 7 \times (0 + 0 \times 7 - 88) + 17 \times (0 + 0 \times 17 - 85)) = 293.1$$

Instead, choose an example at random (ie. Person 2)

$$\theta_0 := \theta_0 - lr \times 2 \cdot ((0 + 0 \times 7 - 88)) = 17.6$$

$$\theta_1 := \theta_1 - lr \times 2 \cdot (7 \times (0 + 0 \times 7 - 88)) = 123$$

daily

17.0

cigarets

age of

death

$$\begin{aligned} \textit{MeanSquaredError}(\theta_0, \theta_1) &= \frac{1}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i)^2 \\ \theta_0 &:= \theta_0 - lr \times \frac{2}{N} \cdot \sum_i (\theta_0 + \theta_1 \times x_i - y_i) \\ \theta_1 &:= \theta_1 - lr \times \frac{2}{N} \cdot \sum_i x_i \times (\theta_0 + \theta_1 \times x_i - y_i) \end{aligned}$$

Our data:

daily cigarets	age of death
32.0	73
7.0	88
17.0	85

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?

YES! (provided the learning rate is decreased over time: it is Stochastic Gradient Descent)

Stochastic Gradient Descent

- Stochastic gradient descent says that we can replace the average of the gradient over all examples by the gradient given by a randomly chosen example
- Slower Convergence
- But if we have one million examples: one million times faster to compute!

$$\theta_0 := \theta_0 - lr \times \frac{2}{N} \cdot \sum_i \left(\theta_0 + \theta_1 \times x_i - y_i\right)$$
 Choose example i randomly
$$\theta_0 := \theta_0 - lr \times 2 \cdot (\theta_0 + \theta_1 \times x_i - y_i)$$

In practice, we often average over a few examples (instead of just one).
 This is called mini-batch gradient descent

Linear Regression: other methods

- Because Linear Regression is a very simple form of Machine Learning (we model data with a simple function),
 there are methods more direct to minimize the Mean Squared Distance (eg. Normal Equations)
- However, for many equations and many variables, Stochastic Gradient Descent can still be the most efficient solution
- There are many existing implementations of Linear Regression, so in practice you would not need to do the gradient descent by yourself anyway
- For example, in python, we can use the function *linregress* in the package *stats* of the library *spicy*:

```
In [1061]: from scipy import stats
In [1062]: stats.linregress(daily_cig_smoked, life_expectancy)
Out[1062]: LinregressResult(slope=-0.710478500965002, intercept=92.29875345880524, rvalue=-0.8609731 085193286, pvalue=1.0335137971251332e-09, stderr=0.07932348624135113)
```

Training a Linear Regression Model

- Jupyter Notebook:
- https://colab.research.google.com/drive/ 18zP8dLYTg6QQmNNIaoQIA_z3bH57v1QO
- http://bit.ly/2IRJqS2

Next

- What if I have more than one variable I want to use?
 - eg. Using Daily number of cigarets, weight, BMI index and sport activity to predict age of death
- What if I want to learn a function more complex than a linear function?
- We will see that next time. But we will see that in practice the process is always the same:
 - Define the model
 - Define the loss
 - Do a gradient descent on the loss