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Learning a function from examples
• Main idea today: Learning a function from examples

We are given example values of f(x) for some x

x f(x)

-3.324820 0.182204

1.294681 0.962122

-4.141596 0.841473

2.928655 0.211333

-2.374387 -0.694126

4.555678 -0.987746

…… ……

What would be the value of the function for all x?

Learning



Learning a function from examples
• We might not always want that the function we learn match exactly the examples


• In practice, we might have to consider “imperfect” or “noisy” examples

Learning

What we are given: What we want to learn :



Predicting from examples
• This can also be seen as a prediction task


• Given examples of the value of the function,  can we predict its value for points not given 
in the example? 

Predict

What we are given:
We predict the value at 3.5 should be -0.45 



Example: influence of smoking on life expectancy
• For a more practical context, let us consider some Health-related situation


• Let us suppose we gathered the data from many persons about:


• How many cigarets they were smoking per day


• How old they died


• Now, knowing that somebody smokes x cigarets per day, we would like to predict what age he is most likely to die

daily 
cigarets

age of 
death

32.0 73.471399

7.0 88.237207

30.0 82.077261

17.0 85.576741

27.0 76.190373

15.0 84.899030

20.0 72.598501

28.0 77.018773

…. …..

What age am I most likely  to die if I 
smoke 10 cigarets per days?

Age

Cigarets



Linear regression
• One possible answer is to do a linear regression 

• We assume there is a linear relation between loss in life expectancy and number of cigarets smoked


• Noting the life expectancy (or age of death) as age and the number of cigarets smoked as cig, we suppose:

age = θ0 + θ1 × cig
Unknown Parameters

• The examples points are not exactly on a line


• This is because cigarets are just one of many things that influence life expectancy


• Two persons smoking the same number of cigarets might have different health 
condition, eating habits, do different amount of sport, etc… But we do not have 
this information in our data.


• This is why we said earlier we expect examples to be noisy: in general, we do not 
know all of the hidden factors explaining the output.

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets



Linear regression
• The linear regression consist in finding the good values for the parameters


• In our Machine Learning terminology, we could also say we are “learning” the function 
that compute the life expectancy from the number of cigarets smoked

age = θ0 + θ1 × cig

• Now, we can make our prediction:


• What age am I most likely to die if I smoke 10 
cigarets per day?


• 90-0.7x10  = 83 year old

θ0 ≈ 90 θ1 ≈ − 0.7
Age

Cigarets



Linear regression
age(θ0, θ1, cig) = θ0 + θ1 × cig

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets
θ0 ≈ 65 θ0 ≈ 70θ1 ≈ 0.7 θ1 ≈ 0

ageθ0,θ1
(cig) = θ0 + θ1 × cig

Age is a function of  3 variables: Age can also be seen as a 
parameterized function of one variable:

• What age am I most likely to die if I smoke 10 cigarets per day?
83 y.o.70 y.o.72 y.o.



Linear Regression
• Linear regression is a common tool in statistics


• It can also be seen as a simple Machine Learning task


• Point of view is a bit different (exagerating a bit):


• In statistics, we are also interested in interpreting the parameters, like the slope of the linear 
approximation


• Smoking one additional pack of cigaret is associated with losing 2.5 years of life expectancy


• In Machine Learning, we do not care so much about the parameters. We care about the 
“predictive” power


• If I know how many pack of cigarets a person smoke, can I predict what age she will die?



Linear regression age = θ0 + θ1 × cig

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets
θ0 ≈ 65 θ0 ≈ 70θ1 ≈ 0.7 θ1 ≈ 0

So, which one is 
best?

How to know which values of the 
parameters Θ0,Θ1 we should use?



Linear regression
• How are we going to find the values of the parameters Θ0,Θ1  ?


• We need a criterion to evaluate the quality of Θ0,Θ1. age = θ0 + θ1 × cig

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets
θ0 ≈ 65 θ0 ≈ 70θ1 ≈ 0.7 θ1 ≈ 0



Mean Squared Error

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• For each example, we consider the error: the distance between the example 
and the model predictions

Age

Cigarets



Mean Squared Error

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• For each example, we consider the error: the distance between the 
example and the model predictions

Age

Cigarets

For this example: 
Predicted: 87 

Real: 69 
Error: 87-69 = +18

For this example: 
Predicted: 67 

Real: 69 
Error: 67-69 = -2



Mean Squared Error

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• For each example, we consider the error: the distance between the example and the 
model predictions


• We take the squared error

Age

Cigarets

For this example: 
Predicted: 87 

Real: 69 
Error: 87-69 = +18 

Sq. Error = 164

For this example: 
Predicted: 67 

Real: 69 
Error: 67-69 = -2 

Sq. Error = 4



Mean Squared Error

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7

MeanSquaredError =
1
N

⋅ ∑
i

( f(xi) − yi)2

N: total number of examples 
xi: number of cigarets smoked by person i 

yi: age person i died 
f(xi): prediction of our model

• For each example, we consider the error: the distance between the example and the model predictions


• We take the squared error 

• Finally, we take average of the squared error for all examples

ageθ0,θ1
(cig)In our case:  f(xi) ~ 

MeanSquaredError =
1
N

⋅ ∑
i

(errori)2



Mean Squared Error

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• The mean squared error now gives us a criterion for finding which 
parameters are best

Age

Cigarets

MeanSquaredError = 294.7 MeanSquaredError = 18.3



Minimizing the Mean Squared Error

• Now, we know what we want: we want to find Θ0,Θ1 such that the  Mean 
Squared error is the smallest possible

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets

MeanSquaredDistance = 294.7 MeanSquaredDistance = 18.3

age = θ0 + θ1 × cig



Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

Loss

MODEL Input

Correct 
Output

Model 
Output

Examples

Parameters

Learn by 
minimizing 

this



Supervised Learning
• In supervised learning, we 

usually have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output

MEAN 
SQUARED 

ERROR

Regression 
model 

Number of 
cigarets 
smoked

Age of death

Prediction

Examples

Parameters 
Θ0,Θ1

Learn by 
minimizing 

this

ageθ0,θ1
(cig) = θ0 + θ1 × cig



Minimizing the Mean Squared Error
• We saw one method for “easily” minimizing a function: gradient descent


• We can apply it here


• We need to express  the Mean Squared Distance as a function of Θ0,Θ1

MeanSquaredError =
1
N

⋅ ∑
i

( f(xi) − yi)2

xi: number of cigarets smoked by person i 
yi: age person i died 

f(xi): prediction of our model 
N: total number of persons in our data

age = θ0 + θ1 × cigf(xi) = θ0 + θ1 × xiWith
(just a rewriting of our model: )



Minimizing the Mean Squared Error

• Therefore, the Mean Squared Distance as a function of Θ0,Θ1  is :

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

• What is the gradient?



Minimizing the Mean Squared Error

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

• What is the gradient?



Minimizing the Mean Squared Error

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

• What is the gradient?

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)



Gradient Descent for Linear Regression

• Knowing the gradient, what would be the formula for the gradient descent 
update?

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)
θ0 := ?

θ1 := ?



Gradient Descent for Linear Regression

• Knowing the gradient, what would be the formula for the gradient descent 
update?

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)
θ0 := θ0 − lr ×

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)



Gradient Descent for Linear Regression

daily 
cigarets

age of 
death

32.0 73

7.0 88

17.0 85

Let us start with Θ0,Θ1  =0, lr=0.1 

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

θ0 := θ0−?

MSE(0,0) = ?

θ1 := θ1−?

Our data:



Gradient Descent for Linear Regression
daily 

cigarets
age of 
death

32.0 73

7.0 88

17.0 85Let us start with Θ0,Θ1  =0, lr=0.1 

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

θ0 := θ0 − lr ×
2
3

⋅ ((0 + 0 × 32 − 73) + (0 + 0 × 7 − 88) + (0 + 0 × 17 − 85)) = 16.4

MSD(0,0) =
1
3

⋅ ((0 + 0 × 32 − 73)2 + (0 + 0 × 7 − 88)2 + (0 + 0 × 17 − 85)2) = 6766

θ1 := θ1 − lr ×
2
3

⋅ (32 × (0 + 0 × 32 − 73) + 7 × (0 + 0 × 7 − 88) + 17 × (0 + 0 × 17 − 85)) = 293.1



Gradient Descent for Linear Regression

daily 
cigarets

age of 
death

32.0 73

7.0 88

17.0 85

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

Our data:

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?



Gradient Descent for Linear Regression
daily 

cigarets
age of 
death

32.0 73

7.0 88

17.0 85
Let us start with Θ0,Θ1  =0, lr=0.1 

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

θ0 := θ0 − lr ×
2
3

⋅ ((0 + 0 × 32 − 73) + (0 + 0 × 7 − 88) + (0 + 0 × 17 − 85)) = 16.4

θ1 := θ1 − lr ×
2
3

⋅ (32 × (0 + 0 × 32 − 73) + 7 × (0 + 0 × 7 − 88) + 17 × (0 + 0 × 17 − 85)) = 293.1

Instead, choose an example at random (ie. Person 2)

θ0 := θ0 − lr × 2 ⋅ ((0 + 0 × 7 − 88)) = 17.6 θ1 := θ1 − lr × 2 ⋅ (7 × (0 + 0 × 7 − 88)) = 123



Gradient Descent for Linear Regression

daily 
cigarets

age of 
death

32.0 73

7.0 88

17.0 85

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredError(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

Our data:

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?
YES!  (provided the learning rate is decreased over time:  

it is Stochastic Gradient Descent)



Stochastic Gradient Descent
• Stochastic gradient descent says that we can replace the average of the gradient 

over all examples by the gradient given by a randomly chosen example


• Slower Convergence


• But if we have one million examples: one million times faster to compute!

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi) θ0 := θ0 − lr × 2 ⋅ (θ0 + θ1 × xi − yi)
Choose example i randomly

• In practice, we often average over a few examples (instead of just one). 
This is called mini-batch gradient descent



Linear Regression: other methods
• Because Linear Regression is a very simple form of Machine Learning (we model data with a simple function), 

there are methods more direct to minimize the Mean Squared Distance (eg. Normal Equations)


• However, for many equations and many variables, Stochastic Gradient Descent can still be the most efficient 
solution


• There are many existing implementations of Linear Regression, so in practice you would not need to do the 
gradient descent by yourself anyway


• For example, in python, we can use the function linregress in the package stats of the library spicy:



Training a Linear Regression Model

• Jupyter Notebook:


• https://colab.research.google.com/drive/
18zP8dLYTg6QQmNNIaoQlA_z3bH57v1QO


• http://bit.ly/2IRJqS2

https://colab.research.google.com/drive/18zP8dLYTg6QQmNNIaoQlA_z3bH57v1QO
https://colab.research.google.com/drive/18zP8dLYTg6QQmNNIaoQlA_z3bH57v1QO


Next

• What if I have more than one variable I want to use?


• eg. Using Daily number of cigarets, weight, BMI index and sport activity to predict age of 
death


• What if I want to learn a function more complex than a linear function?


• We will see that next time. But we will see that in practice the process is always the same: 


• Define the model


• Define the loss


• Do a gradient descent on the loss


