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Previously

• Last week, we looked at convolutional layers 

• And we saw that they can be mathematically represented by an operation 
called the “convolution operation”


• Just like Fully-Connected layers can be represented by Matrix-
Multiplication


• We also saw that the “convolution operation” can be applied to images 
with certain kernels to produce “edge detection”



Convolutional Layers
• Neurons are organized in 2-dimensional layers


• Neurons in 2 layers are only connected if they roughly belong to 
the same area of their respective layer


• Eg. The neuron in the top-left corner of layer 2 is only 
connected to the 9 neurons in the top-left corner of layer 1

Image: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning 

Layer 1

Layer 2
This gives spatial information to  the network 

Because all of the inputs of one neuron correspond to Neighboring pixels

https://arxiv.org/abs/1603.07285
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• How we compute:
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Today

• Today we:


• Consider “volume” convolutions instead of the “flat” convolutions we 
just described


• See one last type of layers: “Max-Pooling” layers


• Combine everything to create an Image Classifier



Volume Convolution

• When we discussed convolution, we considered the input was a 2D array 
of numbers


• This 2D array corresponds for example, to a Black&White image



An image as a 2D array
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0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
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0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

Image with 18x20 pixels  (greyscale)

Array with 18x20 numbers• Greyscale image: each pixel has a grey 
value between 0(black) and 1 (white) 



Volume Convolution

• When we discussed convolution, we considered the input was a 2D array 
of numbers


• This 2D array corresponds for example, to a Black&White image


• What about color images?


• Color images can be represented by 3D arrays
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R channel (red): 18x20 array

G channel (green): 18x20 array

B channel (blue): 18x20 array

Superpose all channels

In a computer, a color image is usually represented in the RGB format 

We separate the color of the images in Red, Green and Blue 
Components 

We have then 3 images that can each be represented by a 2D array



Color images

• In a computer, a color image is usually represented in the RGB format 

• We separate the color of the images in Red, Green and Blue Components


• We have then 3 images that can each be represented by a 2D array


• One color image = three 2D arrays
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0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

R channel (red)

G channel (green)
B channel (blue)

Superpose all 
channels

In a computer, a color image is usually represented in the RGB format 

We separate the color of the images in Red, Green and Blue 
Components 

We have then 3 images that can each be represented by a 2D array

An 18x20x3 array



Volume Convolution
• When we discussed convolution, we considered the input was a 2D array of 

numbers


• A 2D array corresponds for example, to a Black&White image


• What about color images?


• Color images can be represented by 3D arrays


• In Image processing, it is a convention to call the 3rd dimension the 
“channel” dimension


• How do we apply convolutions to 3D arrays?



“Flat” Convolution

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

Input Array Kernel Array
Output Array

2 0 2
0 1 0
-1 1 0

0x2 + 1x0 + 1x2 + 1x0 + 1x1 + 1x0 + 1x-1 + 1x1 + 1x0 = 3

• How we compute:



Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

3D Input Array 3D Kernel Array 2D Output Array

2 0 2
0 1 0
-1 1 0

• We now consider we have a Kernel Array whose 3rd dimension is the same as the input


• Computation is the same as for 2D input, but we sum across channels


• Result is a 2D array

6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

0x1 + 2x2 + 3x-1+ 0x0 + 1x1 + 1x2 + 1x-1 + 1x1 + 1x3 + 2x6 +0x1 +2x4 + … = 1



Volume Convolution

• If we apply a 3D Kernel to a 3D input, we get a 2D array


• Can we get a 3D output array?


• Yes, by using more than one kernel



Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 2 1 -1
4 3 3 2
4 5 3 3
4 5 5 1

=*

3D Input Array

3D Kernel Array X2

3D Output Array

2 0 2
0 1 0
-1 1 0

• Also, we can convolve the input with more than one kernel at a time to 
produce a 3D output with more than one channel

6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

2 0 2
0 1 0
-1 1 0
6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

1 1 1 -1
4 3 3 5
4 5 3 3
4 5 5 3

Channel 1
Channel 2



Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 2 1 -1
4 3 3 2
4 5 3 3
4 5 5 1

=*

3D Input Array

4D Kernel Array

3D Output Array

2 0 2
0 1 0
-1 1 0

• Also, we can convolve the input with more than one kernel at a time to 
produce a 3D output with more than one channel

6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

2 0 2
0 1 0
-1 1 0
6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

1 1 1 -1
4 3 3 5
4 5 3 3
4 5 5 3

Channel 1
Channel 2

4th dim
ension



Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 2 1 -1
4 3 3 2
4 5 3 3
4 5 5 1

=*

3D Input Array

Learnable 4D Kernel

3D Output Array

• The values of the 4D kernel is what we are going to learn when we train our 
Convolutional Network

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

1 1 1 -1
4 3 3 5
4 5 3 3
4 5 5 3

Channel 1
Channel 2

Θ19 Θ20 Θ21 
Θ4 Θ4 Θ24 
Θ6 Θ7 Θ27 

Θ10 Θ Θ12 
Θ4 Θ4 Θ15 
Θ6 Θ7 Θ18 

Θ1 Θ2 Θ3 
Θ4 Θ5 Θ6 
Θ7 Θ8 Θ9 

Θ44 Θ44 Θ45 
Θ4 Θ4 Θ48 
Θ6 Θ7 Θ50 

Θ37 Θ Θ39 
Θ4 Θ4 Θ42 
Θ6 Θ7 Θ143 

Θ28 Θ29 Θ30 
Θ31 Θ32 Θ33 
Θ34 Θ35 Θ36 



Volume Convolution
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• For visualization, it can be interesting to forget the numbers, and just look at 

3D arrays as if they were 3D shapes



Volume Convolution

20 pixels width
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• We can generalize to any number of input and output channels



Volume Convolution

20 pixels width
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• We can generalize to any number of input and output channels



Volume Convolution

• In short the most important thing to remember:


• Convolutions can take a 3D array as input


• Can produce a 3D array as output


• The number of channels (ie. third dimension) of input and output array 
can be different


• Now, we are going to see one last operation: “Max Pooling"



Max Pooling
• Another operation commonly used in CNN: Max Pooling


• Simply takes the max of an area of the input


• Used to reduce the size of the input

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5



Max Pooling

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

• Another operation commonly used in CNN: Max Pooling


• Simply takes the max of an area of the input


• Used to reduce the size of the input



Max Pooling

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

• Another operation commonly used in CNN: Max Pooling


• Simply takes the max of an area of the input


• Used to reduce the size of the input



4 3
5 5

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5
4 3
5 5

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

Max Pooling

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

• Another operation commonly used in CNN: Max Pooling


• Simply takes the max of an area of the input


• Used to reduce the size of the input



“Volume” Max Pooling

• Max-Pooling can be applied to a 3D array as well


• It is applied to each channel separately


• The input is a 3D array


• The output is a 3D array with the same number of channels as the input


• But with other dimensions divided by 2



Max Pooling
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Image Classifier
• Finally, we can look at how we build a full image classifier


• A typical modern image classifier is a Multi-Layered Neural Network


• Input image is sent to a convolutional Layer


• The result is sent to a Max-Pooling layer


• The result is sent to a Convolutional Layer


• And so on….
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Image Classifier

• Finally, we can look at how we build a full image classifier


• A typical modern image classifier is a Multi-Layered Neural Network


• Each Convolutional Layer + Max-Pooling Layer produce a 3D array that is 
“narrower” and “deeper” than the input
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Image Classifier

• Finally, we can look at how we build a full image classifier


• A typical modern image classifier is a Multi-Layered Neural Network


• Each Convolutional Layer + Max-Pooling Layer produce a 3D array that is 
“narrower” and “deeper” than the input


• At the end, we send the “deep and narrow” 3D array to a Fully-Connected 
Classifier
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Final Fully Connected Classifier

Cat?

Fully 
Connected 
layer with 

1000 
neurons 

with  
8x8x64 = 

4094 inputs 
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Fully 
Connected 
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with 1000 
inputs each

Final logistic 
classifier 
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Image Classifier

Alternate Convolutional Layers 
and Max Pooling Layers
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Image Classifier

• Finally, we can look at how we build a full image classifier


• A typical modern image classifier is a Multi-Layered Neural Network


• Each Convolutional Layer + Max-Pooling Layer produce a 3D array that is 
“narrower” and “deeper” than the input


• At the end, we send the “deep and narrow” 3D array to a Fully-Connected 
Classifier



Visualization of a CNN
• Let us look at an excellent online visualization tool:


• Convolutional Network


• 3D representation: http://scs.ryerson.ca/~aharley/vis/conv/


• 2D representation: http://scs.ryerson.ca/~aharley/vis/conv/flat.html


• Fully Connected Network:


• http://scs.ryerson.ca/~aharley/vis/fc/

A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015

http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/flat.html


What do the convolution kernels learn to 
recognize?

From Zeiler&Fergus “Visualizing and Understanding 
Convolutional Networks” 



Learnable Kernels and Edge 
Detectors

=*
Θ1 Θ2 Θ3 
Θ4 Θ5 Θ6 
Θ7 Θ8 Θ9 

In practice, we will be 
learning these parameters 

from examples:

Eyes detector?

Fur detector?

Background detector?

• We know some kernels can emphasize some edges in an image 
(edge detectors)


• Maybe by training the parameters, we discover kernels that can 
emphasize interesting aspects of the image?



What do the convolution kernels learn to 
recognize?

From Zeiler&Fergus “Visualizing and Understanding 
Convolutional Networks” 



About parameters size

• We said that if we have a Fully-Connected Layer with n neurons and m 
input, it contains n x (m+1) parameters


• How many parameters in a Max-Pooling Layer ? 

• How many parameters in a Convolutional Layer?



About parameters size

• We said that if we have a Fully-Connected Layer with n neurons and m 
input, it contains n x (m+1) parameters


• How many parameters in a Max-Pooling Layer ?


• 0 parameters 

• How many parameters in a Convolutional Layer?


• It depends on the 4D kernel size



About parameters size
• Kernel of size k x k with Ci input channels and Co output 

channels


• It means we have Co neurons connected to k x k x Ci 
inputs  for every location in the image


• (k x k x Ci + 1) x Co parameters


• For the kernel on the right: k=3  Ci=3  Co=2


• (3 x 3 x 3 +1) x 2 = 56 parameters

Learnable 4D Kernel

Θ19 Θ20 Θ21 
Θ4 Θ4 Θ24 
Θ6 Θ7 Θ27 

Θ10 Θ Θ12 
Θ4 Θ4 Θ15 
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Θ4 Θ5 Θ6 
Θ7 Θ8 Θ9 
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Θ37 Θ Θ39 
Θ4 Θ4 Θ42 
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Θ28 Θ29 Θ30 
Θ31 Θ32 Θ33 
Θ34 Θ35 Θ36 



Example: VGG network

Image from https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

—>   CAT

[224x224x3]

[224x224x64]
[224x224x64]
[112x112x64]

[112x112x128]
[112x112x128]

[56x56x128]

[56x56x256]
[56x56x256]
[28x28x256]

[28x28x512]
[28x28x512]
[14x14x512]

[14x14x512]
[14x14x512]
[7x7x512]

• “Very Deep Convolutional Networks for Large-Scale Image Recognition” 
Simonyan and Zisserman, 2015


• Best Image Classifier in 2015


• Today the best models have much more layers (> 100)


• Could you compute the number of parameters in each layer?


• All kernels are of size 3 (k=3)


• Conv-64 mean convolutional layer with 64 output channels


• FC-4096 means Fully Connected Layer with 4096 neurons


• Size of input can be guessed from the size of output of the previous layer

https://cs.stanford.edu/people/karpathy/sfmltalk.pdf


Example: VGG network

Image from https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

—>   CAT

[224x224x3]

[224x224x64]
[224x224x64]
[112x112x64]

[112x112x128]
[112x112x128]

[56x56x128]

[56x56x256]
[56x56x256]
[28x28x256]

[28x28x512]
[28x28x512]
[14x14x512]

[14x14x512]
[14x14x512]
[7x7x512]

• Number of parameters for each layer:


• Conv-64 (1st): (3x3x3 + 1) x 64 = 1792


• Conv-64 (2nd): (3x3x64 + 1) x 64 = 36 928


• Conv-128 (1st): (3x3x64 + 1) x 128 = 73 856


• Conv-128 (2nd): (3x3x128 + 1) x 128 = 147 584


• Conv-256 (1st): (3x3x128 + 1) x 256 = 295 168


• Conv-256 (2nd): (3x3x256 + 1) x 256 = 590 080


• Conv-512: (3x3x256 + 1)x 512 = 1 180 160


• 3x Conv-512 (2nd step) : (3x3x512 +1)x512 = 2 359 808


• FC-4096  (1st):  (7x7x512 + 1) x 4096 = 102 764 544 


• FC-4096 (2nd) : (4096 + 1) x4096 = 16 781 312


• FC-1000 : (4096 + 1)x 1000 = 4 097 000


• Total: 1792 + 36 928 + 73 856 + 147 584 + 295 168 + 590 080 + 1 180 160 + 2 359 808 x3 + 102 764 544  + 16 
781 312 + 4 097 000 = 133 047 848 parameters

https://cs.stanford.edu/people/karpathy/sfmltalk.pdf


Supervised Learning

• In supervised learning, we usually 
have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output  (cigarets 
smoked, age of death)

Loss

Neural 
Network 

Output

Input

Prediction
Examples

Parameters 
(weights and biases)

Learn by 
minimizing 

this

!53

How to find the 
parameters?



Supervised Learning

• In supervised learning, we usually 
have:


• A MODEL: a “parameterized” 
function that takes input and 
produce output


• A Loss: A function that 
compute how different the 
model output is from the 
correct output


• Examples of input and 
correct output  (cigarets 
smoked, age of death)

Cross-
Entropy 

Loss

Neural 
Network 

Cat/Dog 
label

Image of 
cats and 

dogs

Prediction
Examples

Parameters 
(weights and biases)

Learn by 
minimizing 

this

!54

How to find the 
parameters?



Actual Training
• Train your network with labeled images and you are good:

Cat

Not Cat

Not Cat

Cat

How to get 5 
images for the 
price of one?



Data augmentation

A cat

How to get 5 images for 
the price of one?



Data augmentation

A cat

Still a cat

How to get 5 images for 
the price of one?

Mirroring



Data augmentation

A cat Still a cat

Still a cat

How to get 5 images for 
the price of one?

Color change

Mirroring



Data augmentation

A cat

Still a cat
Still a cat

Still a cat

Still a cat

How to get 5 images for 
the price of one?

Color change

Mirroring

Cropping

Rotation

And any combination of 
these



Next Time

• That will be all for image recognition


• Next topic we will discuss is Text Processing


