
Computer Vision II
Fundamentals of Artificial Intelligence

Fabien Cromieres

fabien@nlp.ist.i.kyoto-u.ac.jp

Kyoto University

mailto:fabien@nlp.ist.i.kyoto-u.ac.jp

Previously

• Last week, we looked at convolutional layers

• And we saw that they can be mathematically represented by an operation
called the “convolution operation”

• Just like Fully-Connected layers can be represented by Matrix-
Multiplication

• We also saw that the “convolution operation” can be applied to images
with certain kernels to produce “edge detection”

Convolutional Layers
• Neurons are organized in 2-dimensional layers

• Neurons in 2 layers are only connected if they roughly belong to
the same area of their respective layer

• Eg. The neuron in the top-left corner of layer 2 is only
connected to the 9 neurons in the top-left corner of layer 1

Image: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Layer 1

Layer 2
This gives spatial information to the network

Because all of the inputs of one neuron correspond to Neighboring pixels

https://arxiv.org/abs/1603.07285

Convolution

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

Input Array Kernel Array
Output Array

2 0 2
0 1 0
-1 1 0

Convolution

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

Input Array Kernel Array
Output Array

2 0 2
0 1 0
-1 1 0

0x2 + 0x0 + 0x2 + 0x0 + 0x1 + 1x0 + 0x-1 + 1x1 + 1x0 = 1

• How we compute:

Convolution

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

Input Array Kernel Array
Output Array

2 0 2
0 1 0
-1 1 0

0x2 + 0x0 + 1x2 + 0x0 + 1x1 + 1x0 + 0x-1 + 1x1 + 1x0 = 4

• How we compute:

Convolution

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

Input Array Kernel Array
Output Array

2 0 2
0 1 0
-1 1 0

0x2 + 1x0 + 1x2 + 1x0 + 1x1 + 1x0 + 1x-1 + 1x1 + 1x0 = 3

• How we compute:

Edge Detectors

=*
-1 0 1
-1 0 1
-1 0 1

=*
-1 0 1
-1 0 1
-1 0 1

Today

• Today we:

• Consider “volume” convolutions instead of the “flat” convolutions we
just described

• See one last type of layers: “Max-Pooling” layers

• Combine everything to create an Image Classifier

Volume Convolution

• When we discussed convolution, we considered the input was a 2D array
of numbers

• This 2D array corresponds for example, to a Black&White image

An image as a 2D array
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

Image with 18x20 pixels (greyscale)

Array with 18x20 numbers• Greyscale image: each pixel has a grey
value between 0(black) and 1 (white)

Volume Convolution

• When we discussed convolution, we considered the input was a 2D array
of numbers

• This 2D array corresponds for example, to a Black&White image

• What about color images?

• Color images can be represented by 3D arrays

Color images0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

R channel (red): 18x20 array

G channel (green): 18x20 array

B channel (blue): 18x20 array

Superpose all channels

In a computer, a color image is usually represented in the RGB format

We separate the color of the images in Red, Green and Blue
Components

We have then 3 images that can each be represented by a 2D array

Color images

• In a computer, a color image is usually represented in the RGB format

• We separate the color of the images in Red, Green and Blue Components

• We have then 3 images that can each be represented by a 2D array

• One color image = three 2D arrays

Color images0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

R channel (red): 18x20 array

G channel (green): 18x20 array

B channel (blue): 18x20 array

Superpose all channels

In a computer, a color image is usually represented in the RGB format

We separate the color of the images in Red, Green and Blue
Components

We have then 3 images that can each be represented by a 2D array

Color images

• In a computer, a color image is usually represented in the RGB format

• We separate the color of the images in Red, Green and Blue Components

• We have then 3 images that can each be represented by a 2D array

• One color image = three 2D arrays

• One color image = one 3D array

Color images

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.5 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.5 0.0
0.0 0.0 0.0 0.0 0.0 0.7 0.7 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.1 0.6 0.6 0.8 0.7 0.6 0.8 0.6 0.7 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.8 0.7 0.8 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.0 0.7 0.4 0.6 0.6 0.6 0.7 0.9 0.8 0.9 0.8 0.8 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.6 0.5 0.7 0.7 0.1 0.8 0.8 1.0 0.9 0.7 0.0 0.0
0.0 0.0 0.0 0.0 0.5 0.6 0.5 0.6 0.6 0.8 0.4 0.8 0.5 0.6 0.9 0.0 0.0
0.0 0.0 0.0 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.2 0.7 0.9 0.9 0.0 0.0
0.0 0.0 0.1 0.0 0.1 0.5 0.6 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.7 0.0 0.0
0.1 0.1 0.1 0.1 0.2 0.5 0.7 0.7 0.6 0.6 0.7 0.9 0.8 0.9 0.3 0.0 0.0
0.0 0.0 0.0 0.1 0.5 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.2 0.0 0.3 0.0
0.0 0.0 0.0 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.7 0.0 0.0 0.0 0.0

R channel (red)

G channel (green)
B channel (blue)

Superpose all
channels

In a computer, a color image is usually represented in the RGB format

We separate the color of the images in Red, Green and Blue
Components

We have then 3 images that can each be represented by a 2D array

An 18x20x3 array

Volume Convolution
• When we discussed convolution, we considered the input was a 2D array of

numbers

• A 2D array corresponds for example, to a Black&White image

• What about color images?

• Color images can be represented by 3D arrays

• In Image processing, it is a convention to call the 3rd dimension the
“channel” dimension

• How do we apply convolutions to 3D arrays?

“Flat” Convolution

0 0 0 0 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

Input Array Kernel Array
Output Array

2 0 2
0 1 0
-1 1 0

0x2 + 1x0 + 1x2 + 1x0 + 1x1 + 1x0 + 1x-1 + 1x1 + 1x0 = 3

• How we compute:

Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

=*

3D Input Array 3D Kernel Array 2D Output Array

2 0 2
0 1 0
-1 1 0

• We now consider we have a Kernel Array whose 3rd dimension is the same as the input

• Computation is the same as for 2D input, but we sum across channels

• Result is a 2D array

6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

0x1 + 2x2 + 3x-1+ 0x0 + 1x1 + 1x2 + 1x-1 + 1x1 + 1x3 + 2x6 +0x1 +2x4 + … = 1

Volume Convolution

• If we apply a 3D Kernel to a 3D input, we get a 2D array

• Can we get a 3D output array?

• Yes, by using more than one kernel

Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 2 1 -1
4 3 3 2
4 5 3 3
4 5 5 1

=*

3D Input Array

3D Kernel Array X2

3D Output Array

2 0 2
0 1 0
-1 1 0

• Also, we can convolve the input with more than one kernel at a time to
produce a 3D output with more than one channel

6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

2 0 2
0 1 0
-1 1 0
6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

1 1 1 -1
4 3 3 5
4 5 3 3
4 5 5 3

Channel 1
Channel 2

Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 2 1 -1
4 3 3 2
4 5 3 3
4 5 5 1

=*

3D Input Array

4D Kernel Array

3D Output Array

2 0 2
0 1 0
-1 1 0

• Also, we can convolve the input with more than one kernel at a time to
produce a 3D output with more than one channel

6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

2 0 2
0 1 0
-1 1 0
6 1 4
0 1 0
-1 1 3
1 2 -1
0 1 2
-1 1 3

1 1 1 -1
4 3 3 5
4 5 3 3
4 5 5 3

Channel 1
Channel 2

4th dim
ension

Volume Convolution

0 0 0 1 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 1 1 3
0 1 1 1 1 0
0 1 1 1 1 1

1 2 1 -1
4 3 3 2
4 5 3 3
4 5 5 1

=*

3D Input Array

Learnable 4D Kernel

3D Output Array

• The values of the 4D kernel is what we are going to learn when we train our
Convolutional Network

0 2 0 2 0 0
0 0 1 1 0 0
0 1 1 1 0 1
0 1 1 1 1 0
0 1 1 1 1 2
0 1 1 1 1 1

0 0 2 3 0 0
0 0 1 1 0 0
0 1 1 1 0 0
0 1 1 4 1 0
0 1 1 1 1 0
0 1 1 1 1 1

Channel 1

Channel 2
Channel 3

1 1 1 -1
4 3 3 5
4 5 3 3
4 5 5 3

Channel 1
Channel 2

Θ19 Θ20 Θ21
Θ4 Θ4 Θ24
Θ6 Θ7 Θ27

Θ10 Θ Θ12
Θ4 Θ4 Θ15
Θ6 Θ7 Θ18

Θ1 Θ2 Θ3
Θ4 Θ5 Θ6
Θ7 Θ8 Θ9

Θ44 Θ44 Θ45
Θ4 Θ4 Θ48
Θ6 Θ7 Θ50

Θ37 Θ Θ39
Θ4 Θ4 Θ42
Θ6 Θ7 Θ143

Θ28 Θ29 Θ30
Θ31 Θ32 Θ33
Θ34 Θ35 Θ36

Volume Convolution

20 pixels width

18
 p

ixe
ls

he
ig

th
3 ch

an
nel d

epth

20 pixels width

18
 p

ixe
ls

he
ig

th
2 ch

an
nel d

epth

3x3x3x2 4D kernel

* =
• For visualization, it can be interesting to forget the numbers, and just look at

3D arrays as if they were 3D shapes

Volume Convolution

20 pixels width

18
 p

ixe
ls

he
ig

th
3 ch

an
nel d

epth

* 18
 p

ixe
ls

he
ig

th

20 pixels width

5 ch
an

nel d
epth

3x3x3x5 4D kernel

=
• We can generalize to any number of input and output channels

Volume Convolution

20 pixels width

18
 p

ixe
ls

he
ig

th
4 ch

an
nel d

epth

* 18
 p

ixe
ls

he
ig

th

20 pixels width

5 ch
an

nel d
epth

3x3x4x5 4D kernel

=

• We can generalize to any number of input and output channels

Volume Convolution

• In short the most important thing to remember:

• Convolutions can take a 3D array as input

• Can produce a 3D array as output

• The number of channels (ie. third dimension) of input and output array
can be different

• Now, we are going to see one last operation: “Max Pooling"

Max Pooling
• Another operation commonly used in CNN: Max Pooling

• Simply takes the max of an area of the input

• Used to reduce the size of the input

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

Max Pooling

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

• Another operation commonly used in CNN: Max Pooling

• Simply takes the max of an area of the input

• Used to reduce the size of the input

Max Pooling

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

• Another operation commonly used in CNN: Max Pooling

• Simply takes the max of an area of the input

• Used to reduce the size of the input

4 3
5 5

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5
4 3
5 5

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

Max Pooling

1 1 1 -1
4 3 3 2
4 5 3 3
4 5 5 3

4 3
5 5

• Another operation commonly used in CNN: Max Pooling

• Simply takes the max of an area of the input

• Used to reduce the size of the input

“Volume” Max Pooling

• Max-Pooling can be applied to a 3D array as well

• It is applied to each channel separately

• The input is a 3D array

• The output is a 3D array with the same number of channels as the input

• But with other dimensions divided by 2

Max Pooling

20 pixels width

18
 p

ixe
ls

he
ig

th
4 ch

an
nel d

epth

9
pi

xe
ls

he
ig

th

10 pixels width

4 ch
an

nel d
epth

2x2
MaxPooling

Image Classifier
• Finally, we can look at how we build a full image classifier

• A typical modern image classifier is a Multi-Layered Neural Network

• Input image is sent to a convolutional Layer

• The result is sent to a Max-Pooling layer

• The result is sent to a Convolutional Layer

• And so on….

32 pixels width

32
 p

ixe
ls

he
ig

th
3 ch

an
nels d

epth

32 ch
an

nels d
epth

32 pixels width

32
 p

ixe
ls

he
ig

th
16 ch

an
nels d

epth

16 pixels width

16
 p

ixe
ls

he
ig

th
16 ch

an
nels d

epth

32 ch
an

nels d
epth

64 ch
an

nels d
epth

16 pixels width16
 p

ixe
ls

he
ig

th

8 pixels width

8
pi

xe
ls

8
pi

xe
ls

8 pixels width

3x3x3x16
conv

2x2
Maxpool

3x3x16x32
conv

3x3x32x64
conv

2x2
Maxpool

Image Classifier

• Finally, we can look at how we build a full image classifier

• A typical modern image classifier is a Multi-Layered Neural Network

• Each Convolutional Layer + Max-Pooling Layer produce a 3D array that is
“narrower” and “deeper” than the input

32 pixels width

32
 p

ixe
ls

he
ig

th
3 ch

an
nels d

epth

32 ch
an

nels d
epth

32 pixels width

32
 p

ixe
ls

he
ig

th
16 ch

an
nels d

epth

16 pixels width

16
 p

ixe
ls

he
ig

th
16 ch

an
nels d

epth

32 ch
an

nels d
epth

64 ch
an

nels d
epth

16 pixels width16
 p

ixe
ls

he
ig

th

8 pixels width

8
pi

xe
ls

8
pi

xe
ls

8 pixels width

3x3x3x16
conv

2x2
Maxpool

3x3x16x32
conv

3x3x32x64
conv

2x2
Maxpool

Image Classifier

• Finally, we can look at how we build a full image classifier

• A typical modern image classifier is a Multi-Layered Neural Network

• Each Convolutional Layer + Max-Pooling Layer produce a 3D array that is
“narrower” and “deeper” than the input

• At the end, we send the “deep and narrow” 3D array to a Fully-Connected
Classifier

32 pixels width

32
 p

ixe
ls

he
ig

th
3 ch

an
nels d

epth

32 ch
an

nels d
epth

32 pixels width

32
 p

ixe
ls

he
ig

th
16 ch

an
nels d

epth

16 pixels width

16
 p

ixe
ls

he
ig

th
16 ch

an
nels d

epth

32 ch
an

nels d
epth

64 ch
an

nels d
epth

16 pixels width16
 p

ixe
ls

he
ig

th

8 pixels width

8
pi

xe
ls

8
pi

xe
ls

8 pixels width

3x3x3x16
conv

2x2
Maxpool

3x3x16x32
conv

3x3x32x64
conv

2x2
Maxpool

To Fully Connected
Layers

Final Fully Connected Classifier

Cat?

Fully
Connected
layer with

1000
neurons

with
8x8x64 =

4094 inputs
each

Fully
Connected
layer with

200
neurons

with 1000
inputs each

Final logistic
classifier

200 inputs
1 output64 ch

an
nels d

epth

8
pi

xe
ls

8 pixels width

Image Classifier

Alternate Convolutional Layers
and Max Pooling Layers

Classifier with Fully Connected
Layers64 ch

an
nels d

epth

8
pi

xe
ls

8 pixels width

Cat?

Input Image as a 3D array

32 pixels width

32
 p

ixe
ls

he
ig

th
3 ch

an
nels d

epth

Image Classifier

• Finally, we can look at how we build a full image classifier

• A typical modern image classifier is a Multi-Layered Neural Network

• Each Convolutional Layer + Max-Pooling Layer produce a 3D array that is
“narrower” and “deeper” than the input

• At the end, we send the “deep and narrow” 3D array to a Fully-Connected
Classifier

Visualization of a CNN
• Let us look at an excellent online visualization tool:

• Convolutional Network

• 3D representation: http://scs.ryerson.ca/~aharley/vis/conv/

• 2D representation: http://scs.ryerson.ca/~aharley/vis/conv/flat.html

• Fully Connected Network:

• http://scs.ryerson.ca/~aharley/vis/fc/

A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015

http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/flat.html

What do the convolution kernels learn to
recognize?

From Zeiler&Fergus “Visualizing and Understanding
Convolutional Networks”

Learnable Kernels and Edge
Detectors

=*
Θ1 Θ2 Θ3
Θ4 Θ5 Θ6
Θ7 Θ8 Θ9

In practice, we will be
learning these parameters

from examples:

Eyes detector?

Fur detector?

Background detector?

• We know some kernels can emphasize some edges in an image
(edge detectors)

• Maybe by training the parameters, we discover kernels that can
emphasize interesting aspects of the image?

What do the convolution kernels learn to
recognize?

From Zeiler&Fergus “Visualizing and Understanding
Convolutional Networks”

About parameters size

• We said that if we have a Fully-Connected Layer with n neurons and m
input, it contains n x (m+1) parameters

• How many parameters in a Max-Pooling Layer ?

• How many parameters in a Convolutional Layer?

About parameters size

• We said that if we have a Fully-Connected Layer with n neurons and m
input, it contains n x (m+1) parameters

• How many parameters in a Max-Pooling Layer ?

• 0 parameters

• How many parameters in a Convolutional Layer?

• It depends on the 4D kernel size

About parameters size
• Kernel of size k x k with Ci input channels and Co output

channels

• It means we have Co neurons connected to k x k x Ci
inputs for every location in the image

• (k x k x Ci + 1) x Co parameters

• For the kernel on the right: k=3 Ci=3 Co=2

• (3 x 3 x 3 +1) x 2 = 56 parameters

Learnable 4D Kernel

Θ19 Θ20 Θ21
Θ4 Θ4 Θ24
Θ6 Θ7 Θ27

Θ10 Θ Θ12
Θ4 Θ4 Θ15
Θ6 Θ7 Θ18

Θ1 Θ2 Θ3
Θ4 Θ5 Θ6
Θ7 Θ8 Θ9

Θ44 Θ44 Θ45
Θ4 Θ4 Θ48
Θ6 Θ7 Θ50

Θ37 Θ Θ39
Θ4 Θ4 Θ42
Θ6 Θ7 Θ143

Θ28 Θ29 Θ30
Θ31 Θ32 Θ33
Θ34 Θ35 Θ36

Example: VGG network

Image from https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

—> CAT

[224x224x3]

[224x224x64]
[224x224x64]
[112x112x64]

[112x112x128]
[112x112x128]

[56x56x128]

[56x56x256]
[56x56x256]
[28x28x256]

[28x28x512]
[28x28x512]
[14x14x512]

[14x14x512]
[14x14x512]
[7x7x512]

• “Very Deep Convolutional Networks for Large-Scale Image Recognition”
Simonyan and Zisserman, 2015

• Best Image Classifier in 2015

• Today the best models have much more layers (> 100)

• Could you compute the number of parameters in each layer?

• All kernels are of size 3 (k=3)

• Conv-64 mean convolutional layer with 64 output channels

• FC-4096 means Fully Connected Layer with 4096 neurons

• Size of input can be guessed from the size of output of the previous layer

https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

Example: VGG network

Image from https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

—> CAT

[224x224x3]

[224x224x64]
[224x224x64]
[112x112x64]

[112x112x128]
[112x112x128]

[56x56x128]

[56x56x256]
[56x56x256]
[28x28x256]

[28x28x512]
[28x28x512]
[14x14x512]

[14x14x512]
[14x14x512]
[7x7x512]

• Number of parameters for each layer:

• Conv-64 (1st): (3x3x3 + 1) x 64 = 1792

• Conv-64 (2nd): (3x3x64 + 1) x 64 = 36 928

• Conv-128 (1st): (3x3x64 + 1) x 128 = 73 856

• Conv-128 (2nd): (3x3x128 + 1) x 128 = 147 584

• Conv-256 (1st): (3x3x128 + 1) x 256 = 295 168

• Conv-256 (2nd): (3x3x256 + 1) x 256 = 590 080

• Conv-512: (3x3x256 + 1)x 512 = 1 180 160

• 3x Conv-512 (2nd step) : (3x3x512 +1)x512 = 2 359 808

• FC-4096 (1st): (7x7x512 + 1) x 4096 = 102 764 544

• FC-4096 (2nd) : (4096 + 1) x4096 = 16 781 312

• FC-1000 : (4096 + 1)x 1000 = 4 097 000

• Total: 1792 + 36 928 + 73 856 + 147 584 + 295 168 + 590 080 + 1 180 160 + 2 359 808 x3 + 102 764 544 + 16
781 312 + 4 097 000 = 133 047 848 parameters

https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

Supervised Learning

• In supervised learning, we usually
have:

• A MODEL: a “parameterized”
function that takes input and
produce output

• A Loss: A function that
compute how different the
model output is from the
correct output

• Examples of input and
correct output (cigarets
smoked, age of death)

Loss

Neural
Network

Output

Input

Prediction
Examples

Parameters
(weights and biases)

Learn by
minimizing

this

!53

How to find the
parameters?

Supervised Learning

• In supervised learning, we usually
have:

• A MODEL: a “parameterized”
function that takes input and
produce output

• A Loss: A function that
compute how different the
model output is from the
correct output

• Examples of input and
correct output (cigarets
smoked, age of death)

Cross-
Entropy

Loss

Neural
Network

Cat/Dog
label

Image of
cats and

dogs

Prediction
Examples

Parameters
(weights and biases)

Learn by
minimizing

this

!54

How to find the
parameters?

Actual Training
• Train your network with labeled images and you are good:

Cat

Not Cat

Not Cat

Cat

How to get 5
images for the
price of one?

Data augmentation

A cat

How to get 5 images for
the price of one?

Data augmentation

A cat

Still a cat

How to get 5 images for
the price of one?

Mirroring

Data augmentation

A cat Still a cat

Still a cat

How to get 5 images for
the price of one?

Color change

Mirroring

Data augmentation

A cat

Still a cat
Still a cat

Still a cat

Still a cat

How to get 5 images for
the price of one?

Color change

Mirroring

Cropping

Rotation

And any combination of
these

Next Time

• That will be all for image recognition

• Next topic we will discuss is Text Processing

