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Summary of Last Session 1/3

* [ast session, we considered a simple case of Linear Regression:
* For 30 people, we know how old they died, and how many cigarets they were smoking per day

* Using this data, we wanted to predict the life expectancy of somebody given how many cigarets they were smoking
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Summary of Last Session 2/3

* We suppose there was some proportionality between the number of cigarets smoked and the
reduction in life expectancy

* \We suppose a linear relation between age of death and number of cigarets smoked

age = 0, + 0, X cig
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* Now, we can make our prediction:

 What age am | most likely to die if | smoke 10

cigarets per day?

¢ 90-0.7x10 =83 year old



Summary of Last Session 3/3

* We saw that we could find the parameters of this linear relation by minimizing the

Mean Squared Error between the prediction of the model and the actual values

e We saw we could use Gradient Descent to do this minimization
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Supervised Learning

: : Learn by
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usually have: this

Loss

* AMODEL: a “parameterized”
function that takes input and
produce output
Correct
e A Loss: A function that Output
compute how different the Examples

model output is from the Nput  megp  MODEL > Model

correct output Output
Parameters

« Examples of input and
correct output



Supervised Learning

: : Learn by
* In supervised learning, we minimizing
usually have: this

MEAN
« AMODEL: a “parameterized” SQUARED
function that takes input and ERROR
produce output
A Loss: A function that Age of death
compute how different the Examples
model output is from the Number of memp REQression sl Prediction
correct output cigarets model
smoked
Parameters
« Examples of input and ©0,01

correct output , ,
ageq o (cig) = 6y + 0, X cig



Today

* \We expand on this by considering:

 More than one input feature

« More complex functions

 We will have a look at the important concept of overfitting




Adding more information

* The number of cigarets smoked is not the only important factor for predicting the age of death
* Physical shape
* Biological Sex

e Wealth
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Adding more information

* Let us suppose now that, for the same 30 persons, we also have their BMI index and know their sex

* Vocabulary Note: In Machine Learning, we often call a “feature” or “feature function” each of this

piece of information about an example

daily cigarets bmi is male age of death
0 5.0 18.5 1.0 79.8
1 9.0 45.1 0.0 56.8
2 38.0 14.2 0.0 61.4
3 12.0 48.5 1.0 37.5
4 34.0 19.2 0.0 68 .4
S 5.0 38.6 0.0 69.3
6 31.0 33.8 1.0 54 .8
7 25.0 33.6 1.0 63.0
3 240 45.2 1.0 39.3
9 ..

Is male: 1 if the person is a

male, O if female

Note: most of the time, this is how we represent
“categorical data” in Machine Learning: a feature
equal to 1 if the example belongs to the category in
question, and equal to zero otherwise



Visual representation of the examples
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Linear Regression with more than one feature

 We can still suppose that the age of death is a linear function of the
features

age =0y + 0, X cig * age =0y + 0, X cig + 0, X bmi + 65 X ismale

 \WWe now have 2 more parameters (because we have 2 more features)

 For a total of 4 parameters

e But finding the parameters will be done in exactly the same way as in the
case with one feature
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Supervised Learning

* In supervised learning, we usually Learn by
_ minimizing
have: / this
_ MEAN
* AMODEL: a “parameterized” SQUARED
function that takes input and ERROR

produce output

e A Loss: A function that Age of death
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Supervised Learning

* In supervised learning, we usually Learn by
_ minimizing
have: / this
. MEAN
* AMODEL: a “parameterized SQUARED

function that takes input and ERROR
produce output

* A Loss: A function that Age of death
compute how different the
model output is from the Examples :
correct output NUMbEr Of mmmfpy- - REQGression sl Prediction
cigarets
model
smoked
 Examples of input and correct Parameters
: - ©0,01, 02,03
output (cigarets smoked, bmi,

Is_male, age of death)
agey o (cig) = Oy + 0, X cig + 0, X bmi + 03 X ismale



Reminder: loss with one feature

* We saw that we could find the parameters of this linear relation by minimizing the
Mean Squared Distance between the prediction of the model and the actual values

e We saw we could use Gradient Descent to do this minimization
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Linear Regression with more than one feature

 The loss is defined as before: the average of the squared distance
between model prediction and real example values

MeanSquaredError =

daily cigarets bmi| is male age of death
0 50 185 1.0 79.8
1 90 451 0.0 56.8
2 380 142 0.0 614
3 12.00 485 1.0 37.5
7 250 336 1.0 63.0
3 240 452 39.3
9...

2 (model(cig., bmi,, ismale;) — agel-)2

T
Model prediction for example I. Real value for example 1.

age, .1 = Oy + 0, X cig + 6, X bmi + 0; X ismale



Small Exercise: compute the loss

 The loss is defined as before: the average of the squared distance

between model prediction and real example values

MeanS dE : Z(
ean Uddre rror = — - m
1 N 4

! Model prediction for example I.

daily cigarets bmi is male age of death
0 5.0 18 0.0 80
1 9.0 45 1.0 57
2 38.0 16 0.0 61

A8ECodel =

0, =90 O, =-—1

Compute the model prediction for each of the examples.
Then, compute the loss.

. .« e )
odel(cig,, bmi;, ismale;) — age;)
I
Real value for example I.

sz _01

0y + 0, X cig + 6, X bmi + 0; X ismale



|
MeanSquaredError = — - Z (model(cig., bmi;,, ismale;) — azgel-)2

N . e
! Model prediction for example i. Real value for example i.
daily cigarets bmi is male age of death a gemodel — H() + 91 4 Clg + 92 )4 bﬂ”ll + 93 X l ST le
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What is the gradient?

 To do it a bit differently than last time: let us note the error on example |

dsS.
error; = model(cig;, bmi,, ismale;) — age;
 Then our loss is equal to: (The mean squared distance is
1 0 actually also often called the mean
MeanSquaredErrOr - — (677”07'-) squared error)
N z
l

e Then our loss is equal to:
Using linearity and the fact that

1 0 d y
—MeanSquaredDistance = — - Z 2 X error; X ——errotr; ——[fOOP = 2 X fx) X — f(x)
00, N £ 00,



What is the gradient?

a parameters, so gradient is a
4-dimesnional vector)

——error; = ismale,
005

0
—MeanSquaredError = — - 2 X error; X —ermr
00, N £ 00,
error; = model(cig,, bmi., ismale;) — age; age, .1 = 0y + 0, X cig + 0, X bmi + 0; X ismale
0 1
—error; = 1 — - 2 2 X error; X 1
00, N *=
0 1
——error; = Clg; L i
00, l # oradient = | W ZZXermrlXczgl
0 | -
——error; = bmi; = | 3
692 (we know have 4 N 2 2 X crror; X bmll
1

Z 2 X error; X ismale,



Small Exercise: compute the gradient

error; = model(cig;, bmi, ismale;) — age; age, 1.1 = Gy + 0, X cig + 0, X bmi + 6; X ismale
e Let us compute the gradient for this examples and Ox:

daily cigarets bmi is male age of death
0 50 18 00 30
1 00 45 10 57 |
2 380 16 00 61 N Z 2 X error; X 1
i

Note you already computed the errors when you
computed the loss in previous exercise

eradient = : Z 2 X error; X cig;
i

1
N
: 2 bmi
N 2 X error; X bmi,
1 l

- Z 2 X error; X ismale;

l

N
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daily cigarets bmiis male age of death
0 5.0 18 0.0 80
1 9.0 45 1.0 37
2 38.0 16 0.0 61

Note you already computed the errors when you
computed the loss in previous exercise

gradient =

vl LUl IV yICI.UIUI IC 1V LTV UAC[IIIVIUO QU I\ U K-

1
A ZZXermrixl
| , ,
A Z X error; X cig;
| < |
N 2 2 X error; X bmi.
1 l

N

l

- 2 2 X error; X ismale;



Gradient Descent

Now that we know how to compute the gradient, we can find the optimal
parameters with gradient descent:

Initialize Z 5) = |0,, 0,, 0,, 0]
l 0 0
- Lomputegrad - arad - madel(g)) = [—f, . .—f]
moede 00, 00,
é
Update@ :

—>

— —
0 =60 —Ir-grad - model( 0)



 We can see that our features have very different ranges and means:

Feature Scaling

* “daily cigarets” is from 0 to 50

e “Dbmi” is from 15 to 50

e “iIs male” is from 0 to 1

« Usually, features having different ranges makes learning/gradient descent more difficult

daily cigarets bmi is male age of death
0 5.0 18.5 1.0 79.8
1 9.0 45.1 0.0 56.8
2 38.0 14.2 0.0 61.4
3 12.0 48.5 1.0 37.5
4 34.0 19.2 0.0 68 .4
S 5.0 38.6 0.0 69.3
6 31.0 33.8 1.0 54 .8
7 25.0 33.6 1.0 63.0
3 240 45.2 1.0 39.3
9 ..

The solution is to scale all the
features to the same range

old — mean(old)
max(old) — min(old)

new —

This way, all features have ranges between -1
and 1, and mean equal to zero



Feature Scaling

daily cigarets| bmi is male age of death
0 240 444 1.0 43 .4
1 370 47.7 1.0 25.2
2 110 14.1 0.0 73.1
3 330 493 1.0 25.5
4 270 204 0.0 70.5
5 270 38.2 1.0 52.1
6 6.0 22.2 1.0 78.6
7 310 17.1 0.0 64.6
8 28.0/ 23.3 0.0 71.3
9 150 314 1.0 66.8

new —

old — mean(old)

max(old) — min(old)

>

o After the features have been scaled, we apply Gradient Descent as usual:

daily cigarets bmi is male age of death
0 0.064957 0.313072 0.433333 43 4
1 0.398291| 0.405509 0.433333 25.2
2 -0.268376| -0.535668 -0.566667 73.1
3 0.295726/ 0.450327 0.433333 25.5
4 0.141880 -0.359197 -0.566667 70.5
5 0.141880| 0.139402 0.433333 52.1
6 -0.396581 -0.308777 0.433333 78.6
7 0.244444 -0.451634) -0.566667 64.6
8 0.167521 -0.277965 -0.566667 71.3
9 -0.165812| -0.051074 0.433333 66.8




Learning more complicated functions

So far, we have only tried to learn linear functions of the data

We might want to learn more complicated functions

For example, having a high BMI reduce life expectancy

But having a very low BMI also reduces life expectancy
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We need a more
complex model!
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Learning more complex functions: “Expanding the
feature space”

* One neat trick to learn more complex functions: Create additional features from existing features

* Then apply linear regression

 Example: From the feature bmi, we add bmi2, bmi3 and bmi+:

bmi age of death bmi  bmiA2 bmiA3 bmi*4  age of death
0 444 434 0 44.4 197136 87528384 3.88E+06 43 4
1 47.7 252 1 47.7 227529 108531333 5.17E+06 25.2
2 14.1 73.1 2 14.1 19881 2803221 3.95E+04 73.1
3 493 25.5
3| 493 243049 119823.157 5.90E+06 25.5
4 20.4 70.5
4 204 416.16  8489.664 1.73E+05 70.5
5 38.2 >2.1 5 382 145924 55742968 2.12E+06 52.1
6 .. ol
- : %) .3 .4
age, . = Oy + 0, X bmi + 0, X bmi= + 6; X bmi” + 0, X bmi




Learning more complicated functions

* This way, we can learn much more complex functions

» After finding the optimal parameters by gradient descent on the Mean Squared Error:
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age

Learning Functions that are too complicated

 Now, we might think:

model —

Cool. | am going to add as
many variations of the features

as | can. Then my loss (Mean
Squared Error) will drop to ze

///bmi bmiA2 bmiA3 bmi/r4 bmiA5 sin(bmi) log(bmi) age of death
0 44 4| 1971.36) 87528.384 3.886260E+06 1.725500E+08 0.405662 3.793239|... 43 4
1 47.7 2275.29 108531.333 5.176945E+06 2.469403E+08| -0.544766 3.864931]... 25.2
2 14.1] 198.81 2803.221 3.952542E+04 5.573084E+05 0.999309 2.646175|... 73.1
3 49.3) 2430.49 119823.157 5.907282E+06 2.912290E+08| -0.822324 3.897924|... 25.5
4 204 416.16, 8489.664 1.731891E+05 3.533059E+06 0.999793 3.015535|... 70.5
5 38.2| 1459.24| 55742.968 2.129381E+06 8.134237E+07 0.480205 3.642836|.. 52.1
6 222 49284 10941.048 2.428913E+05 5.392186E+06| -0.207336 3.100092|... 78.6
7 17.1] 29241 5000.211 8.550361E+04 1.462112E+06|  -0.984065 2.839078].. 64.6
8 ..

Oy + 0, X bmi + 0, X bmi* + 0; X bmi°> + 0, X bmi* + 05 X bmi> + 0 X sin(bmi) + 05 X log(bmi) + . . .




Cool. My loss (Mean Squared
Error) is lower than before.
My model is better now!

Or is it really better???

Age

 The problem: this is what you are going to get:

Learning Functions that are too complicated
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Learning Functions that are too complicated

 The problem: this is what you are going to get:

Age
80 - o -2 o
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Cool. My loss (Mean Squared 0 J . s A .
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My model is better now! 50 - °\o |
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30 -
e O
20 -
Or is it really better??? -~

15 20 25 30 35 40 45 50 BMI

MeanSquaredError = 1.3
The model predict that somebody with BMI 48 will die at 18

But somebody with BMI 51 is predicted to die at 80



Overfitting

* [t turns out that minimizing the loss does not always give the best model....

* This phenomenon is called overfitting
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Overfitting

Overfitting is to Machine Learning what Rote Learning is to Human Learning

Instead of understanding the data, the model just memorized all of the examples

If we ask it to predict the age of death of an example it has seen, it will give very
good prediction

But it will give very bad prediction as soon as we ask him to make a prediction
for someone that was not in the example data.

Very similar to a student that memorize without understanding the answer to a
set of exercises in a class. He will do very well in the exam if the exam contains
the exercises he studied, but very bad if the exercises are a bit different.




How to detect overfitting?

Pretty much like we do with humans: We evaluate them with different exercises
than the ones they were trained for.

In practice, It means we separate our example data In 2:
* Jraining Data
* Jest Data

We use the training data to do the Learning (we train the model)

We use the test data to evaluate the quality of the learning (we test the model)




How to detect overfitting?

* |n blue: training examples

* In red: test examples
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How to detect overfitting?

e |f we see a model with very low training loss and high test loss: it is

overfitting!
Linear Model More Complex Model “Too Complex” Model
Age Age Age
L ® ®
80 ® ' o ¢ 80 ® ' » ¢ 50 y e * » ..-.’
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70 - » e | ° 70 - @ B o ¢ o\ e ¢ e \%H
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MeanSquaredError = 18.6 MeanSquaredError = 11.2 MeanSquaredError = 1.3

TestMeanSquaredError = 17.3 TestMeanSquaredError = 11.8 TestMeanSquaredError = 24.5



How to prevent overfitting?

* A very simple and very efficient method for preventing overfitting is called
“early stopping”

* During the gradient descent, we check the test loss at each iteration.
When the test loss starts to increase (or stay unchanged) for a few
iteration, we stop the training




Gradient Descent with Early Stopping

—
Initialize X

|

" Compute grad f(x)

l

Test

~ lossis Yes Stop training or we are
Increasing going to overfit

No

—>
Update X :

X =X —1Ir-grad - f(X)



How to prevent overfitting?

 Another method is to reduce the capacity of the model

 Roughly speaking, the capacity of a model is its ability to adapt to a large
number of examples

 The capacity of a model will increase with the humber of parameters




How to prevent overfitting: Capacity
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How to prevent overfitting?

Models with high capacity can learn more complicated relations
But they overfit more easily

A model with very high capacity has the ability to memorize all the training
examples (the rote learning problem)

If we reduce the capacity of a model, we can make it less prone to
overfitting



How to prevent overfitting: Capacity

 The simplest way to reduce capacity is to remove some parameters in the
model;

Oy + 0, X bmi + 0, X bmi* + 0; X bmi°> + 0, X bmi* + 05 X bmi° + 0 X sin(bmi) + 05 X log(bmi) + . . .

v

Oy + 0, X bmi + 0, X bmi* + 0, X bmi* + 6, X bmi°

A€ odel —

A8 C0del —



How to prevent overfitting: Capacity

 Another way to reduce the capacity is “force” the model to use small
values for the weights

By default, the parameters Ok can take any value: -100 000, 0.1, 1 000
000

 |f we forbid the model to use very high values for Ok, we reduce its
capacity: it cannot adapt to data as well as before

 Most practical way to forbid high values: “L2 Regularization™



L2 Regularization

« We note |©]2 the sum of the square of all parameters Ok (this is called the
“.2 Norm”)

 Then we add this quantity to the loss we want to minimize:

|
Loss = MeanSquaredError = N - Z (model(cig., bmi,, ismale;) — czgel-)2

v

Loss = l : Z (model(cig., bmi., ismale,) — age.)” + | 7\2
N l 1 1 l l

 Then we apply Gradient Descent to this new loss



Notebook

 Short URL: http://bit.ly/2Ys8mmM

« Long URL: https://colab.research.google.com/drive/
1TmQV3wndM1mw4vw96Ga9cxM5YhgOuulLOQ



Next

e Next time, we will consider Classification Problems:

e Predicting if some symptoms are the sign of a disease or not...
* Predicting if an image represents a cat or a dog

* Predicting if a text is in French, German or Japanese



