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What we are going to do

 (Given a function of one variable, find
practically the value for which it is
minimum

e a.k.a “univariate function”

 You should have seen how to do that for
simple functions in High School

e Given a function of several variables, find
the value for which it iIs minimum

e a.k.a “multivariate function”
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Why we do it?

Actually, almost all algorithms of supervised machine
learning can be reduced to finding the minimum of a function
of several variable

The idea is that we will have a function called the loss that
measure the difference between our system output and the
training example

By minimizing the /oss, we make our system learn to reproduce
the examples correctly

Note that “function of several variables” can mean “millions of
variables”

* Some extremely big neural networks might have a loss
function with billions of variable

 Fortunately, it is conceptually not more difficult to minimize a
function of 2 variables or a function of one million variables



Minimizing a function of one
variable
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The “High School” view of minimization

* Let us start by recalling what we learn in high school

 \What you learned exactly might vary depending on your country of
education and majors, but hopefully you all have some experience with

this

To minimize f(x):
Compute first derivative f’(x)
Compute second derivative ”(x)
Find x0 such that f’(x0) =
If £’(x0) > 0 then x0 is a local minimum of f
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Note: It iIs not how we will

minimize functions in practice




L ocal minimum, local maximum

* Note that the condition on the second derivative is important to distinguish minimums from maximum

* Also, the solution could be only a local minimum
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e |t is even possible for derivative to be 0 even if the function has no
Minimum




About derivatives

» Does everybody remember how to compute derivatives?
* Do not panic if you don't.

* In practice, we will have functions that can compute the derivatives
automatically for us

 Still, you should understand at least how they work
» we Will review briefly the basics



Computing derivatives

Exercise:

f(x) £(x) sin(x) + log(x)
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What is a derivative?

* One definition: the coefficient of the best linear approximation of a function at x
* If his small: fx+h)~f(x)+h-f(x)
« Example:

e if we know that [log(2.3) = 0.8329009...

 How much is log(2.4)7?

* Supposing we cannot compute a log again
e 24=23+0.1 i
« We can approximate: /08(2.4) = log(2.3) +0.1 X 53

. . 1
* Which gives: l0g(2.3) + 0.1 X —— = 0.876387...

* The true value is: log(2.4) = 0.875468...



What is a tangent?

 The line that best approximate a line at a point




What is a derivative?

* The derivative is also the coefficient of the tangent to the graph
of the function.

f(x)=x"2-4*x+5 f(x)=2"x-4

f(0) = -4 T S




Tangent and derivative
J(x+h) = f(x) + h - f(x)

S




Derivative and minimum

* Intuitively, this shows you why the derivative should be zero at a minimum

2 -
1 -
0 - -

20 -15 -10 -05 00 05 10 15 20




Derivative and minimum

e The derivative tells us in which direction move to find the minimum
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X = —
f(=1) = -3

If derivative at x is negative, minimum is on the right
(we need to increase x to get closer to the minimum)

If derivative at x is positive, minimum is on the left

1 R

0 R

(we need to decrease x to get closer to the minimum):

If derivative at x is zero, x should be a minimum
(not necessarily in theory, but in our cases, it will be)
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Initialize x

|

err would be the acceptable error

" Compute f’(x) In practice we will often use different
ways of checking we have a good
l approximation of the minimum
, Yes x should be close to the
If’(X)| < err . .
minimum
No

Ir: learning rate
Update x: Should be a positive value

x'=x—1[r .f’(x) If too large: no convergence

If too small: very slow convergence

fx) =x*—x

fx)=2x—-1
arg min f(x) = 0.5

Gradient Descent algorithm

Ir=0.2

x=0.493
£(x) = -0.014

STOP?



Gradient Descent Algorithm

. Gra_dli:)elnt descent works well even when we have functions of millions of
variable

* This is why it is so useful for Machine Learning and Neural Networks
» Other methods will not be practical in such settings
» Convergence will depend on the choice of a good learning rate

* In experiments, a good deal of time is often spent finding an optimal
learning rate

* Too large learning rate: no convergence (ie. the system learn nothing)

* Too small learning rate: slow convergence (ie. the system takes a
long time to learn)



Minimizing a function of
several variables

http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/
(Lecture 3-2nd part)



http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/

Functions of several variables

e A function of several variables is just that: a function which has several
variables

0,0,0) =0

fiR >R ;21,2,3; _ 7
f,y,2) =@ -y +z7"—z f(—=1,2,2) =11

£0,1,1) = 2

1(2,2,0) =7

o Like before, we want to find its minimum:

arg min f(x, y, z) = (0,0,0.5)

X,Y5<



Vectors

What are vectors?
You probably have used vectors in Physics classes to represent force and speed

» 3-dimensional vectors: [2.3, 4.5, -1]

In Machine Learning, we also use them a lot
Except that they can have more than 3 dimensions
 5-dimensional vector: [-1, 3, 4.1 ,5.2, 4]

e We often note the set of all n-dimensional vectors R

(12.14.1,—-1,—- 1] e R



Vectors (Continued)

 For now, we only need to know the following about vectors:
e A n-dimensional Vector is a list of n numbers

 \We can add 2 vectors (if they have the same dimension)
12.1,3.4,1.1,3.2]+[—-1,2.1,3.1, - 2] =[1.1,5.5,4.2,1.2]
2.1,3.4] +[-1,2.13.1,-2] = X

 \We can multiply a vector by a number

0.5x%x[2,3,—1,-2]=1[1,1.5,—1.5,—1]



Vectors(Continued)

* We will usually denote a vector by a letter with an arrow on It: 7

—
 \We denote the ith component of X by X

e If X =[1,2.2,—14]

* Then we have xo=1, X1=2.2, Xo=-1, X3=4



Vectors: Exercise

x =[1,5,-2,0.5]

v = [2.2.10,10]
7z =[3, —3,0]
e Dimensionsof X, Vy,Z ?

e Values of X1, y2, Zo, Yo?

—

 Compute: X +y
X +05x7y
V+7Z



Vectors and Numpy

[981]: X = np.array([1l, 5, =2, 0.5])
y = np.array([2,2,10,10])

In Python, Numpy arrays are a Srinteny o e oD
. rint

convenient way to represent S

vectors [ 1. 5. -2. 0.5]

[ 2 2 10 10]
[ 3 -3 0]

x =[1,5,-2,0.5]

In [982]: print(len(x), len(y), len(z))

4 4 3

* X =np.array([1, 35, -2, 0.5]) In [983]: print(x[1], y[2], z[0], y[0])
5.0 10 3 2

° X[O] == X0 == In [984]: print(x+y)
[ 3. 7. 8. 10.5]

° X[1] —— X1 —— In [985]: print(x+0.5*y)

[2. 6. 3. 5.5]

* \Vector operations: x+0.5™y

In [986]: print(y+2z)

ValueError



Vectors and Multivariate functions

* For now, we have represented the variables of a multivariate function with the letters x, y, z as
oy = =yt -2

* |In practice, we can have any number of variables. So it is more convenient to use:

* Xo(instead of x) , X1 (instead of y), X2 (instead of z), X3 .. Xn (if we need more than 3

variables) ) o)
f(xO, xl, X2) — (XO — xl) + X2 — X2
 We can also the vectorial notation to represent all of the variables as one vector variable:

—

X =[xy, X1, X,] f(x) = (x5 — x1)2 + x22 — X

* S0, keep in mind that the 3 following expressions actually refer to the same function:

foe,y,2) = (x=y)*+2° -z
f(x, X1, %) = (X9 — X)) + X5 — X,

f(X) = (xg — x)* + x5 — x,



Partial derivatives

What is the equivalent of our “high school” derivatives when we have several
variables?

One part of the answer is partial derivatives
Partial derivatives are computed by choosing one variable and fixing the others

Indeed, if we choose vy, and fix x and z, we can see f(X, y, z) as a function of one
variable and compute its derivative

fe,y,2) =@ -y +z7"—z

L P ey s,
o Y gy 0T oz T



Computing the partial derivatives

fe,y,2) =@ -y +z7"—z

of of of
0X oy 07



Partial derivatives

 Exercise: Compute the partial derivatives

fx,y,2) = xyz — 2% — y*

fx,v,2) = "™ — sin(x + 2)



Gradient

 The partial derivatives become the component of a vector we call the
gradient

of of of
rad - f(x,y,7) = |[—,—,—
grad - f(x,y, 2) [ax 5 o
 Forexample: f(x,y,2) = (x —y)2 +7°—7

‘ grad - f(x,y,z) = [2(x = y),2(y — x),2z — 1]



Interpreting the gradient

3D plot

[ 200

flx,y) = 4x — 2)° + 4(y + 1) = 0.1xy o

erad - f(x,y) = [8(x — 2) — 0.1y,8(y + 1) — 0.1x]

grad - (0,0) = [—16,16]
grad - f(2,— 1) =[0.1, — 0.2]




Gradient

(LI
grad - f(x,y,2) = [=~, 5 o

* In this case, the function has 3 variables. Therefore the gradient is a vector
of size 3

» |f the gradient has n variables, it is a vector of size n

 More precisely, the gradient of f is itself a function that return a vector

f:R"> R grad - f: R" - R"

f(x19x29 .« o ,xn) grad .f(xl’XZ’ e "xl’l) — [gl’ * e ’gn]



What is the equivalent of second derivative for

multivariate functions?

of  9of o
It is the Hessian Matrix: o2 oxdy  oxog
o°f 0% 0*f
oxay 0y? 0y0z
But thankfully, we will not need to use it | 9°f 0*f of
0x07 0y0z 072

« But for your information, this would be the equivalent of the “High School”
minimization when we have several variables:

To minimize f(x, y, 2):
1. Compute gradient of f(x, y , 2)
2. Compute hessian of f(x)
3. Find X, y, z such that grad f(x,y,z) = 0
4. If hessian of f(x,y,z) is definite positive then
(X,y,z) is a local minimum of f



Gradient Descent algorithm

f(X) = (g — x)* + x5 — x,

BYe —>
nitialize X X =[x, Xp5 - - X, ] grad - (%) = [2(xy — x,).20x, — 0).2%, — 1]
[r =0.2
| - of of
" Compute grad f(x) gl"dd f(x ) — [a—, c .. E]
| *0 & X = (0,1,0)
grad - f(x) =[-2,2, — 1]
Yes x should be close to the
lgrad(x)| < err . minimurm
x =(0.4,0.6,0.2)
No grad - f(X) = [-0.4.0.4, — 0.6]
U date?
p = _,
= (0.41,0.43,0.51
X :=x —=Ir-grad- f(¥X) x = (0 )

grad - f(x) = [—0.04,0.04,0.01]



Gradient Descent Algorithm

 You can see that, in the case of the gardient descent, the algorithm is the
same for univariate functions and multivariate functions

e |t is a simple algorithm, but it scales very well
* There exists many variations of it;
 Gradient Descent with momentum

» Stochastic Gradient Descent

 Adagrad, Adadelta, Adam, ...



Gradient Descent with Momentum

 Compute a “gradient with momentum” at each iteration:
gm, = 0.6grad - (x) + 0.4gm,_,

—>
Update X :
_)

—_
X :=x —Ir-gm



Stochastic Gradient Descent

 What happens if the gradient is noisy?

 That is, we can only compute a value that is equal to the true gradient “on
average”?

* A bit like If you are drunk and trying to get home



Stochastic Gradient Descent

What happens if the gradient is noisy?
That is, we can only compute a value that is equal to the true gradient “on average”?
* A Dbit like if you are drunk and trying to get home

It turns out It works.
[r

V(+ 1)

Very interesting because a noisy gradient can be million times faster to compute
than a "“true” gradient

 But you have to decrease your learning rate over time to stabilize [r =

* Convergence will be slower



Optimization libraries

* You can also minimize a function by using a specialized library
|t gives you access to more sophisticated minimization algorithms

 However these more sophisticated algorithms do not scale as well as Gradient
Descent

 Which is one Gradient Descent and its variants are still the main tool for large
scale Machine Learning (In particular, Deep Learning)

In [103]: scipy.optimize.minimize(f numpy, np.array([0,0]), jac=grad f numpy, method="L-BFGS-B")

Out[103]: fun: 0.1969057665260197
hess inv: <2x2 LbfgsInvHessProduct with dtype=float64>
jac: array([-3.88578059e-16, 2.77555756e-17])
message: b'CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL'
nfev: 5
nit: 4
status: 0

success: True
X: array([ 1.9878106 , -0.97515237])



