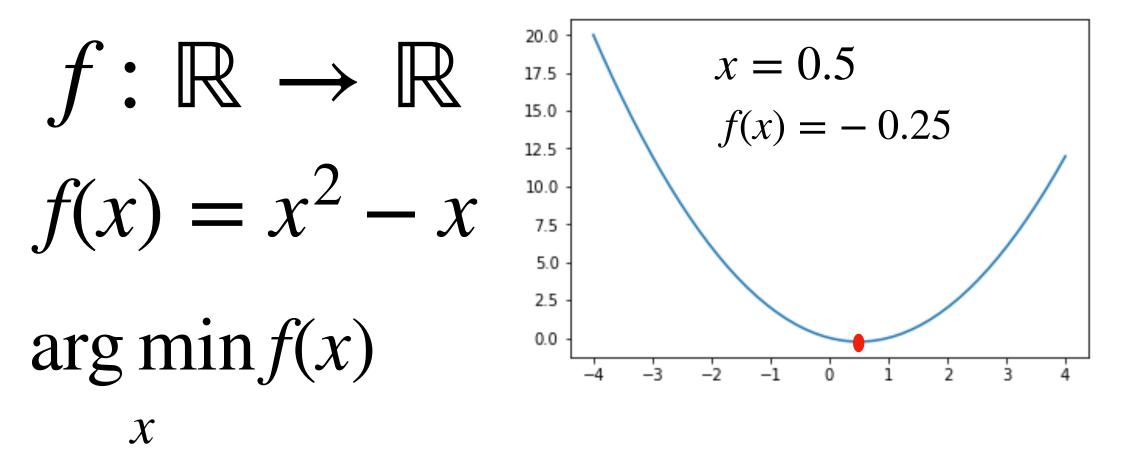
Minimizing functions with Gradient Descent

Fundamentals of Artificial Intelligence Fabien Cromieres Kyoto University

http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/

What we are going to do

- Given a function of one variable, find practically the value for which it is minimum
 - a.k.a "univariate function"
 - You should have seen how to do that for simple functions in High School
- Given a function of **several variables**, find the value for which it is minimum
 - a.k.a "multivariate function"



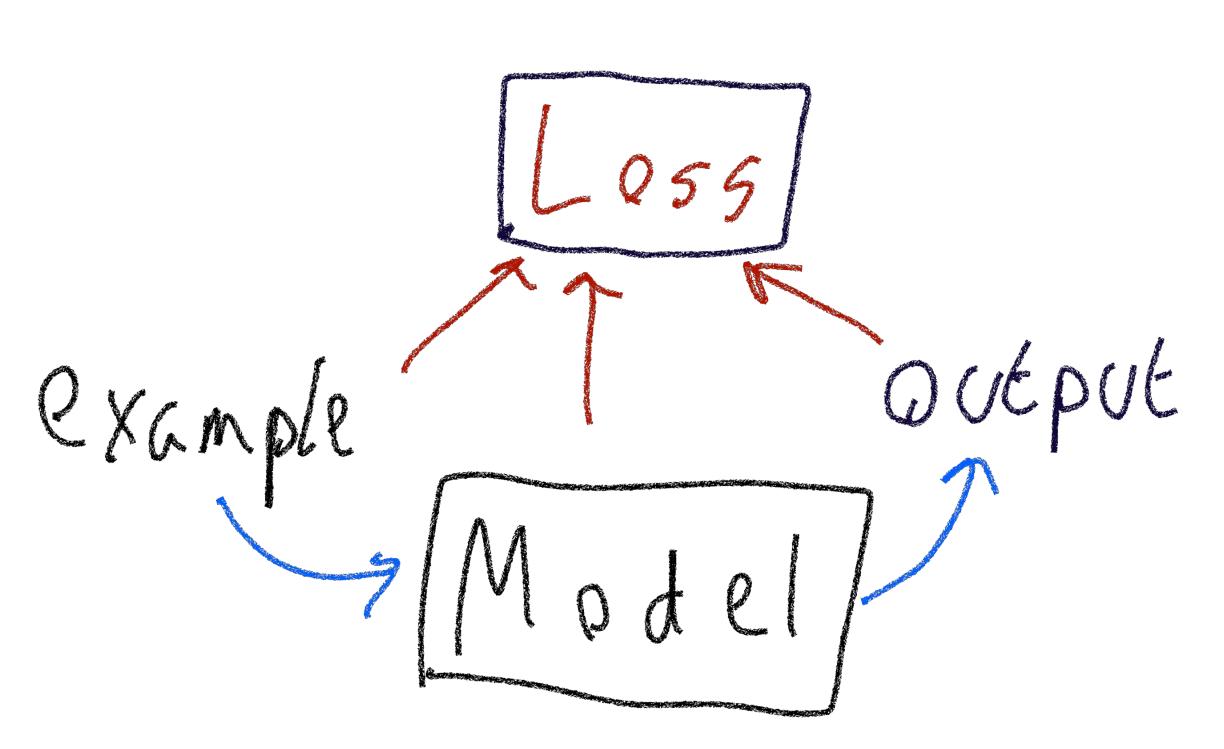
$$f: \mathbb{R}^3 \to \mathbb{R}$$

$$f(x, y, z) = (x - y)^2 + z^2 - z$$

$$\underset{x,y,z}{\operatorname{arg min}} f(x, y, z)$$

Why we do it?

- Actually, almost all algorithms of supervised machine learning can be reduced to finding the minimum of a function of several variable
- The idea is that we will have a function called the loss that measure the difference between our system output and the training example
- By minimizing the loss, we make our system learn to reproduce the examples correctly
- Note that "function of several variables" can mean "millions of variables"
 - Some extremely big neural networks might have a loss function with <u>billions of variable</u>
 - Fortunately, it is conceptually not more difficult to minimize a function of 2 variables or a function of one million variables



Minimizing a function of one variable

The "High School" view of minimization

- Let us start by recalling what we learn in high school
 - What you learned exactly might vary depending on your country of education and majors, but hopefully you all have some experience with this

To minimize f(x):

1. Compute first derivative f'(x)

2. Compute second derivative f''(x)

3. Find x0 such that f'(x0) = 0

4. If f''(x0) > 0 then x0 is a local minimum of f

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x^{2} - x$$

$$f'(x) = 2x - 1 \longrightarrow x_{0} = 0.5$$

17.5

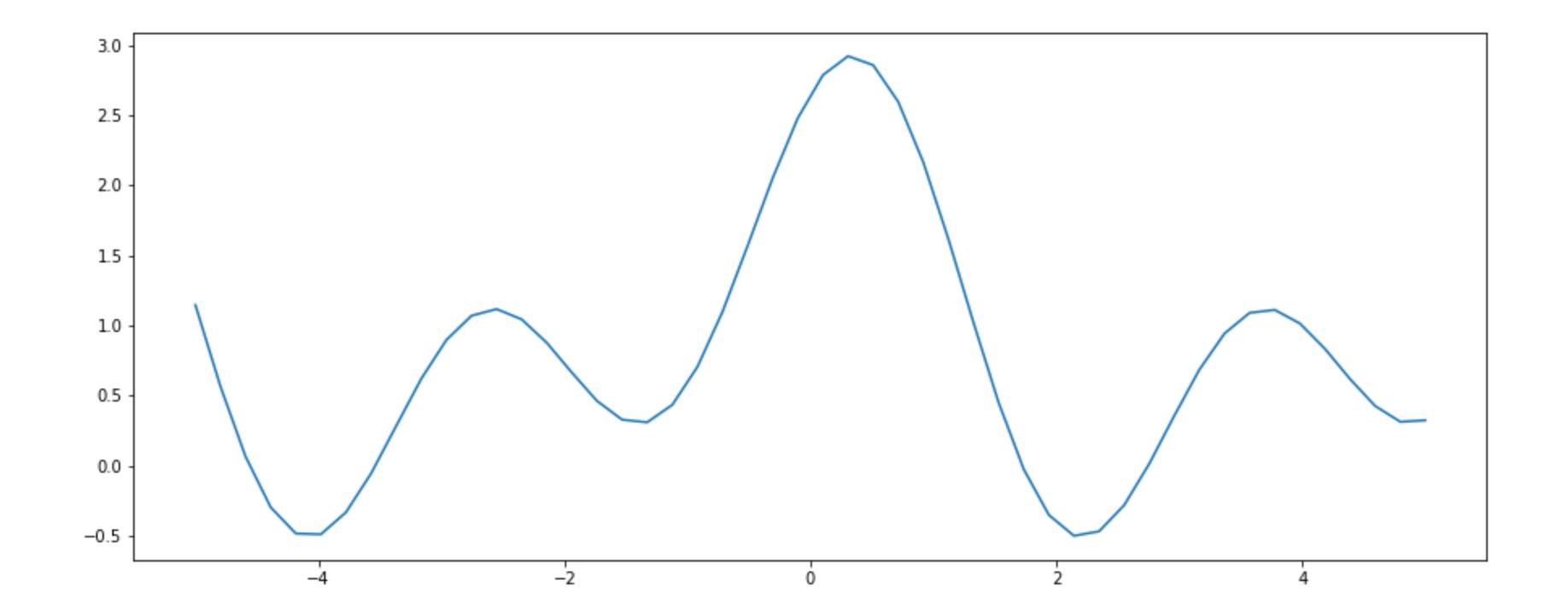
15.0

12.5

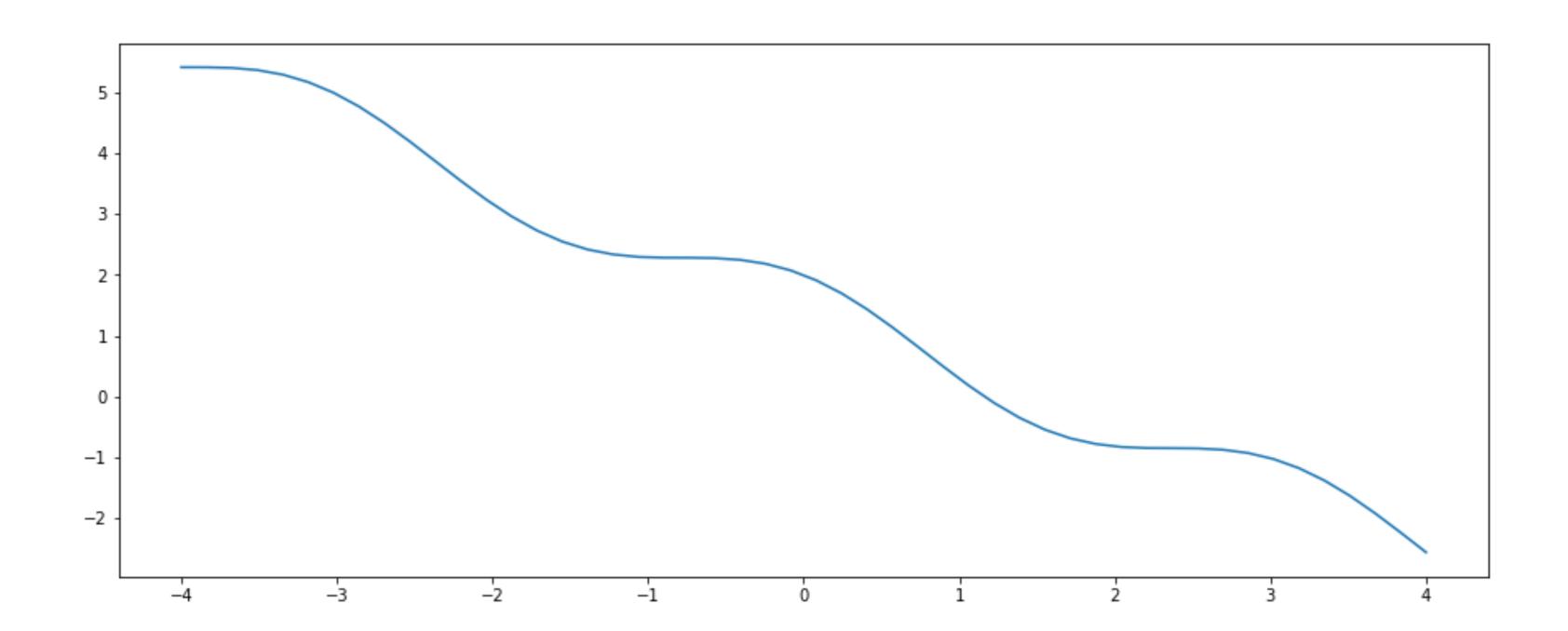
Note: It is not how we will minimize functions in practice

Local minimum, local maximum

- Note that the condition on the second derivative is important to distinguish minimums from maximum
- Also, the solution could be only a local minimum



 It is even possible for derivative to be 0 even if the function has no minimum



About derivatives

- Does everybody remember how to compute derivatives?
- Do not panic if you don't.
 - In practice, we will have functions that can compute the derivatives automatically for us
 - Still, you should understand at least how they work
 - we will review briefly the basics

Computing derivatives

f(x)	f'(x)	
sin(x)	cos(x)	
cos(x)	-sin(x)	
\boldsymbol{x}^{n}	nx^{n-1}	
log(x)	$\frac{1}{x}$	
e^{x}	e^{x}	
g(h(x))	$h'(x) \times g'(h(x))$	Composition rule
	$g'(x) \times h(x) + g(x)$	$f(x) \times h'(x)$ Leibniz rule
g(x) + h(x)	g'(x) + h'(x)	Linearity I
$\alpha \cdot h(x)$	$\alpha \cdot h'(x)$	Linearity II

Exercise:

$$sin(x) + log(x)$$

$$2 \times log(x + 1)$$

$$sin(2x)$$

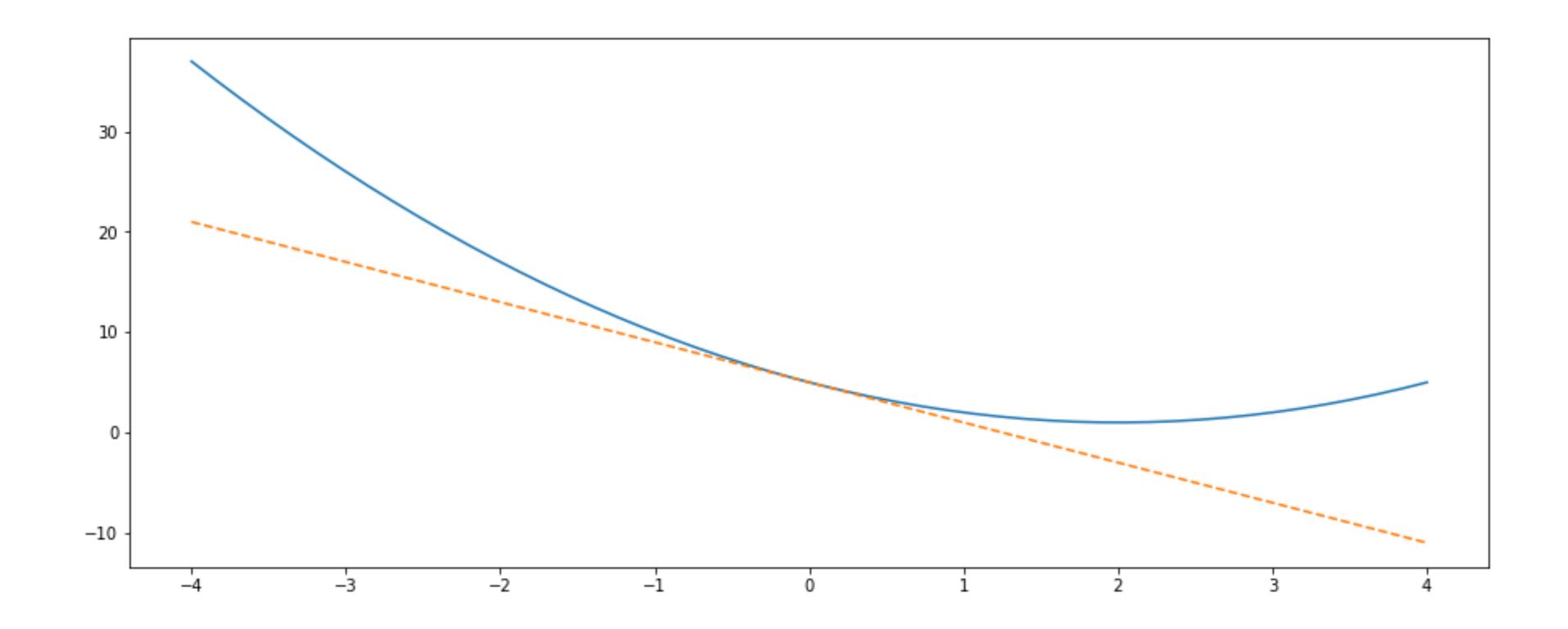
$$\frac{e^x}{x}$$

What is a derivative?

- One definition: the coefficient of the best linear approximation of a function at x
- If h is small: $f(x+h) \approx f(x) + h \cdot f'(x)$
- Example:
 - if we know that log(2.3) = 0.832909...
 - How much is log(2.4)?
 - Supposing we cannot compute a log again
 - $\cdot 2.4 = 2.3 + 0.1$
 - We can approximate: $log(2.4) \approx log(2.3) + 0.1 \times \frac{1}{2.3}$
 - Which gives: $log(2.3) + 0.1 \times \frac{1}{2.3} = 0.876387...$
 - The true value is: log(2.4) = 0.875468...

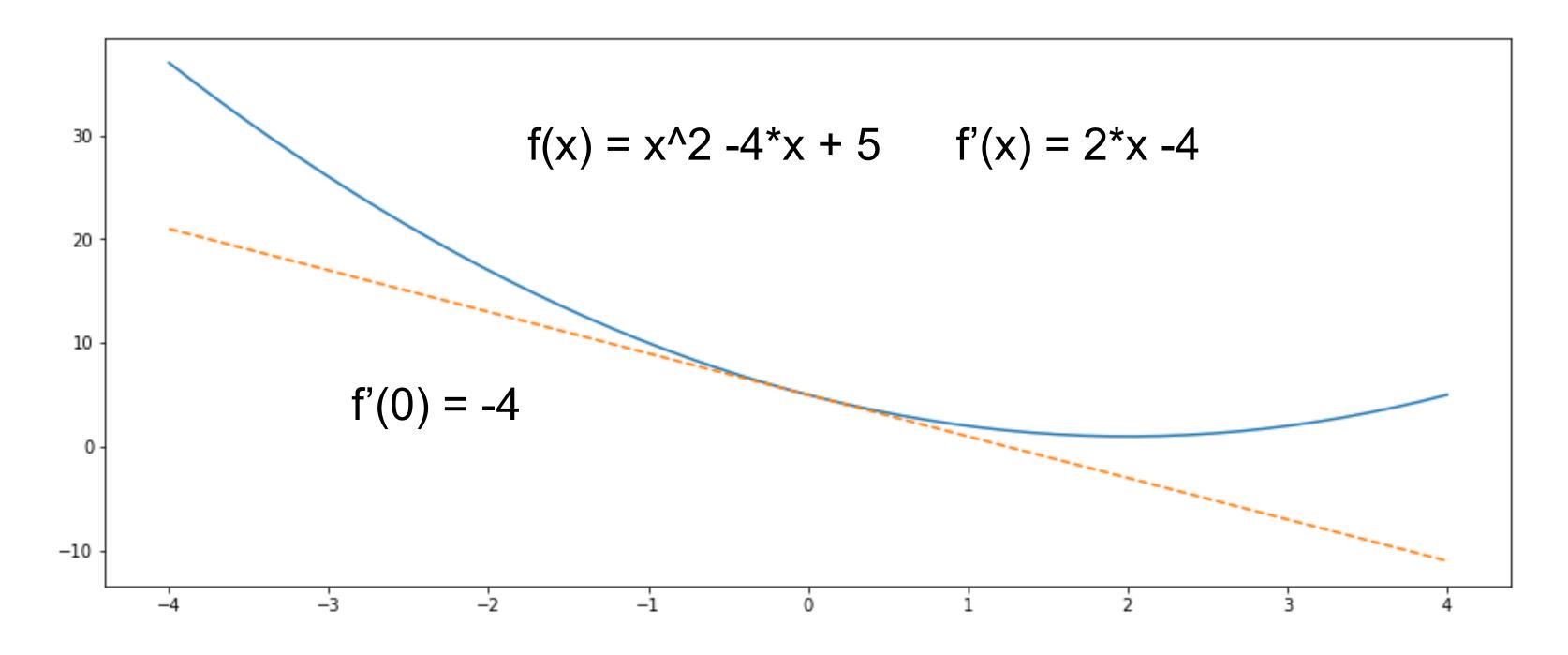
What is a tangent?

• The line that best approximate a line at a point



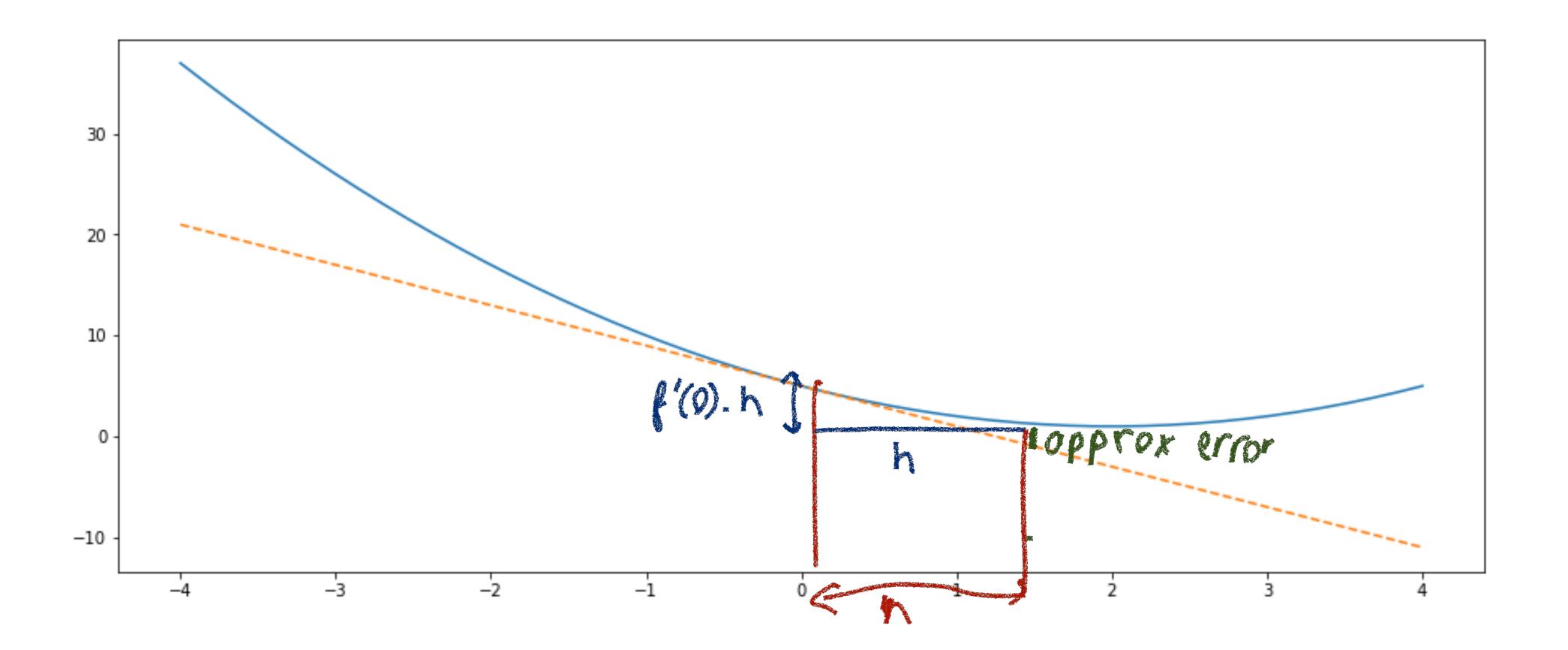
What is a derivative?

 The derivative is also the coefficient of the tangent to the graph of the function.



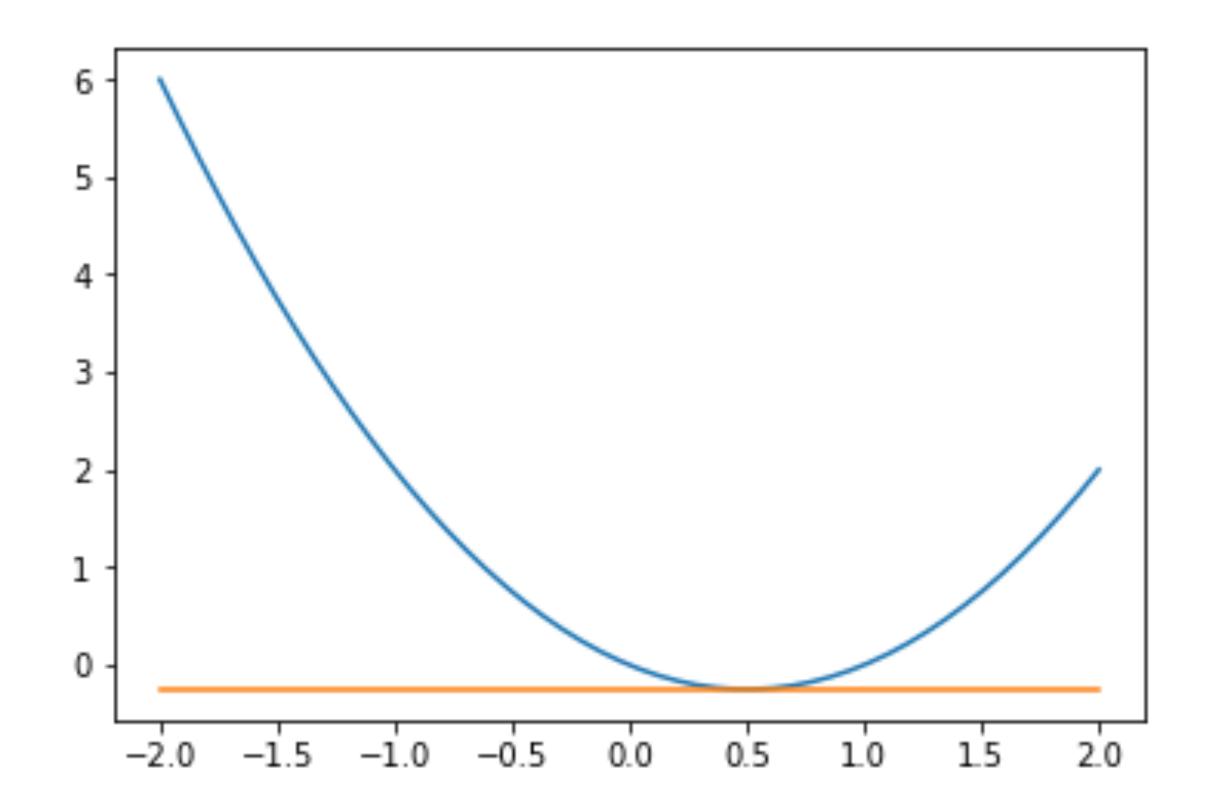
Tangent and derivative

$$f(x+h) \approx f(x) + h \cdot f'(x)$$



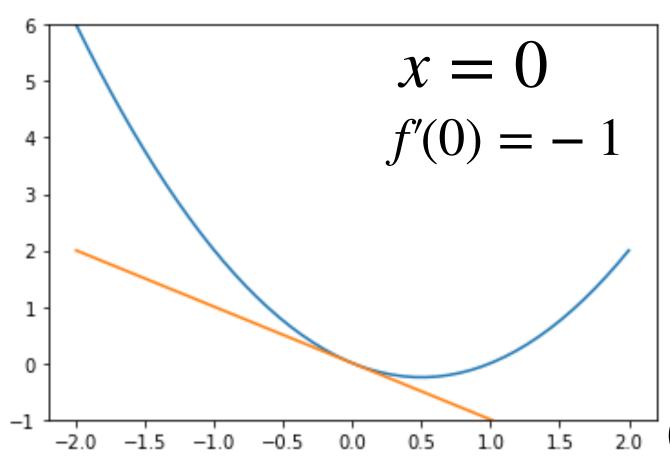
Derivative and minimum

Intuitively, this shows you why the derivative should be zero at a minimum

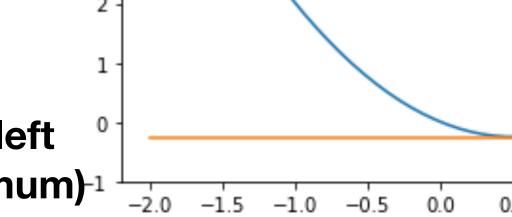


Derivative and minimum

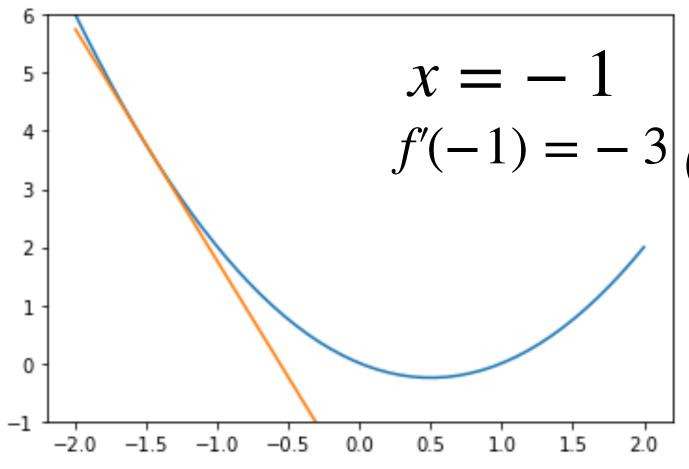
The derivative tells us in which direction move to find the minimum



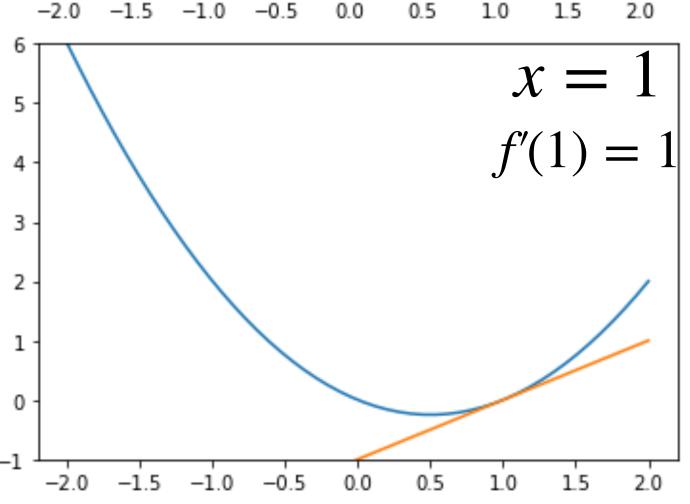
If derivative at x is negative, minimum is on the right (we need to increase x to get closer to the minimum)



If derivative at x is positive, minimum is on the left (we need to decrease x to get closer to the minimum)-1

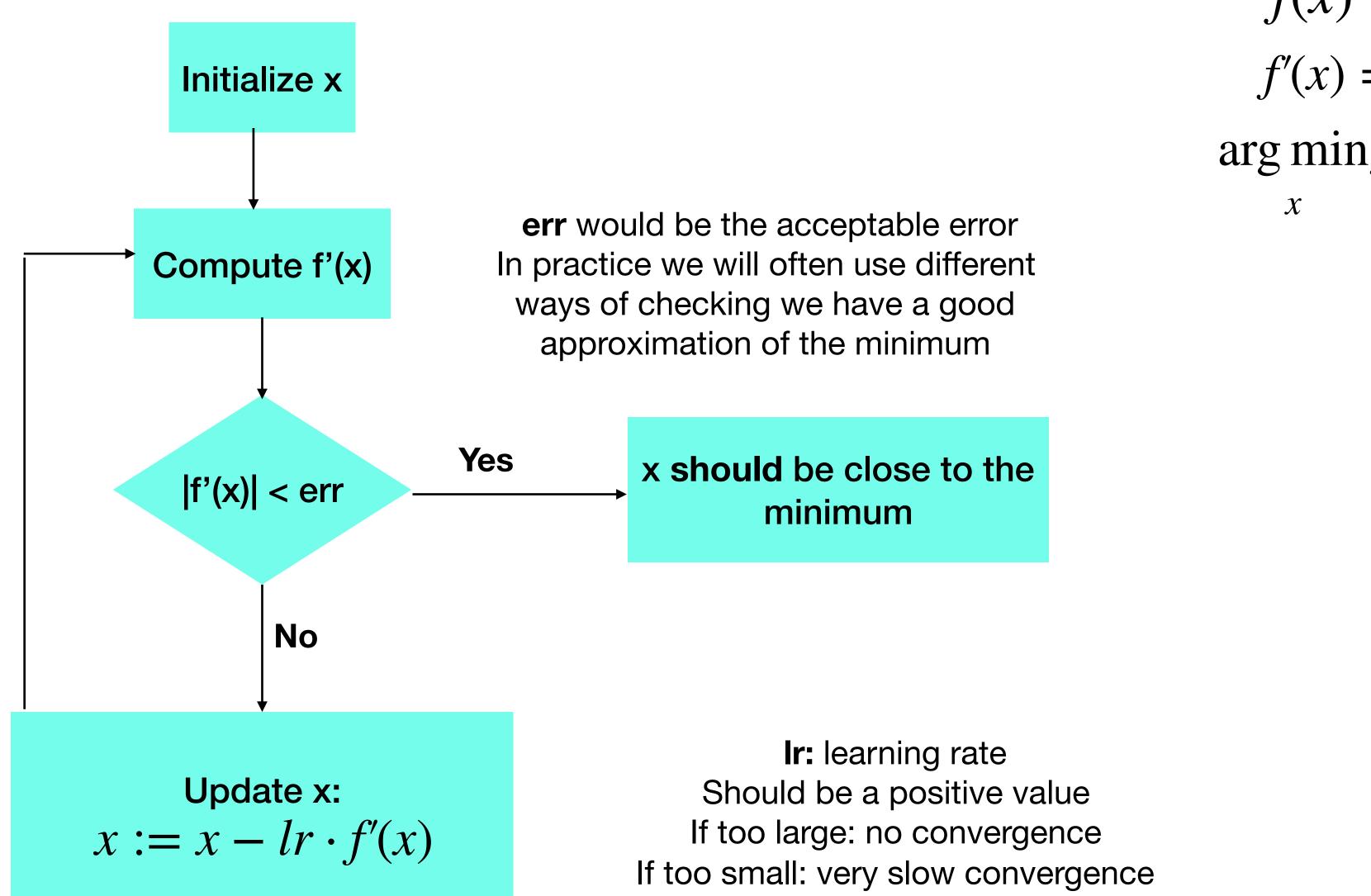


If derivative at x is zero, x should be a minimum (not necessarily in theory, but in our cases, it will be)



x = 0.5

Gradient Descent algorithm



$$f(x) = x^{2} - x$$

$$f'(x) = 2x - 1$$

$$\arg \min_{x} f(x) = 0.5$$

$$x = 0$$

$$f'(x) = -1$$

$$x = 0.2$$

$$f'(x) = -0.6$$

$$x = 0.32$$

$$f'(x) = -0.36$$

$$x = 0.392$$
...
...
$$x = 0.493$$

$$f'(x) = -0.014$$
STOP?

Gradient Descent Algorithm

- Gradient descent works well even when we have functions of millions of variable
 - This is why it is so useful for Machine Learning and Neural Networks
 - Other methods will not be practical in such settings
- Convergence will depend on the choice of a good learning rate
 - In experiments, a good deal of time is often spent finding an optimal learning rate
 - Too large learning rate: no convergence (ie. the system learn nothing)
 - Too small learning rate: slow convergence (ie. the system takes a long time to learn)

Minimizing a function of several variables

http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/ (Lecture 3-2nd part)

Functions of several variables

 A function of several variables is just that: a function which has several variables

$$f: \mathbb{R}^3 \to \mathbb{R}$$
$$f(x, y, z) = (x - y)^2 + z^2 - z$$

$$f(0,0,0) = 0$$

 $f(1,2,3) = 7$
 $f(-1,2,2) = 11$
 $f(0,1,1) = ?$
 $f(2,2,0) = ?$

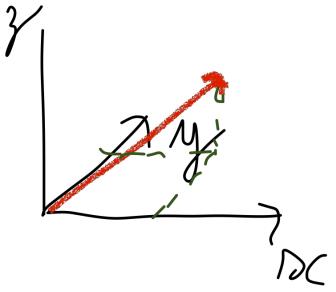
Like before, we want to find its minimum:

$$\underset{x,y,z}{\arg\min} f(x, y, z) = (0,0,0.5)$$

Vectors

- What are vectors?
- You probably have used vectors in Physics classes to represent force and speed
 - 3-dimensional vectors: [2.3, 4.5, -1]
- In Machine Learning, we also use them a lot
- Except that they can have more than 3 dimensions
 - 5-dimensional vector: [-1, 3, 4.1, 5.2, 4]
 - We often note the set of all n-dimensional vectors

$$[1,2.1,4.1,-1,-1] \in \mathbb{R}^5$$



Vectors (Continued)

- For now, we only need to know the following about vectors:
 - A n-dimensional Vector is a list of n numbers
 - We can add 2 vectors (if they have the same dimension)

$$[2.1,3.4,1.1,3.2] + [-1,2.1,3.1, -2] = [1.1,5.5,4.2,1.2]$$

 $[2.1,3.4] + [-1,2.1,3.1, -2] =$

We can multiply a vector by a number

$$0.5 \times [2,3,-1,-2] = [1,1.5,-1.5,-1]$$

Vectors(Continued)

- We will usually denote a vector by a letter with an arrow on it: $\overrightarrow{\chi}$
- We denote the ith component of $\overrightarrow{\mathcal{X}}$ by x_i
- If $\vec{x} = [1,2.2,-1,4]$
 - Then we have $x_0=1$, $x_1=2.2$, $x_2=-1$, $x_3=4$

Vectors: Exercise

$$\vec{x} = [1,5, -2,0.5]$$
 $\vec{y} = [2,2,10,10]$
 $\vec{z} = [3, -3,0]$

- Dimensions of $\vec{x}, \vec{y}, \vec{z}$?
- Values of x₁, y₂, z₀, y₀?
- Compute: $\overrightarrow{x} + \overrightarrow{y}$ $\overrightarrow{x} + 0.5 \times \overrightarrow{y}$ $\overrightarrow{y} + \overrightarrow{z}$

Vectors and Numpy

 In Python, Numpy arrays are a convenient way to represent vectors

$$\vec{x} = [1,5, -2,0.5]$$

- x = np.array([1, 5, -2, 0.5])
- $x[0] == x_0 == 1$
- $x[1] == x_1 == 5$
- Vector operations: x+0.5*y

```
In [981]: x = np.array([1, 5, -2, 0.5])
           y = np.array([2,2,10,10])
           z = np.array([3, -3, 0])
           print(x)
           print(y)
           print(z)
            [1. 5. -2. 0.5]
            [ 2 2 10 10]
            [ 3 -3 0]
 In [982]: print(len(x), len(y), len(z))
            4 4 3
 In [983]: print(x[1], y[2], z[0], y[0])
            5.0 10 3 2
 In [984]: print(x+y)
            [ 3. 7. 8. 10.5]
 In [985]: print(x+0.5*y)
 In [986]: print(y+z)
```

Vectors and Multivariate functions

- For now, we have represented the variables of a multivariate function with the letters x, y, z as in: $f(x, y, z) = (x y)^2 + z^2 z$
- In practice, we can have any number of variables. So it is more convenient to use:
 - x_0 (instead of x), x_1 (instead of y), x_2 (instead of z), x_3 ... x_n (if we need more than 3 variables) $f(x_0, x_1, x_2) = (x_0 x_1)^2 + x_2^2 x_2$
- We can also the vectorial notation to represent all of the variables as one vector variable:

$$\overrightarrow{x} = [x_0, x_1, x_2]$$
 $f(\overrightarrow{x}) = (x_0 - x_1)^2 + x_2^2 - x_2$

• So, keep in mind that the 3 following expressions actually refer to the same function:

$$f(x, y, z) = (x - y)^{2} + z^{2} - z$$

$$f(x_{0}, x_{1}, x_{2}) = (x_{0} - x_{1})^{2} + x_{2}^{2} - x_{2}$$

$$f(\overrightarrow{x}) = (x_0 - x_1)^2 + x_2^2 - x_2$$

Partial derivatives

- What is the equivalent of our "high school" derivatives when we have several variables?
- One part of the answer is partial derivatives
- Partial derivatives are computed by choosing one variable and fixing the others
- Indeed, if we choose y, and fix x and z, we can see f(x, y, z) as a function of one variable and compute its derivative

$$f(x, y, z) = (x - y)^2 + z^2 - z$$

$$\frac{\partial f}{\partial x} = 2(x - y) \qquad \frac{\partial f}{\partial y} = 2(y - x) \qquad \frac{\partial f}{\partial z} = 2z - 1$$

Computing the partial derivatives

$$f(x, y, z) = (x - y)^2 + z^2 - z$$

$$\frac{\partial f}{\partial x} =$$

$$\frac{\partial f}{\partial y} =$$

$$\frac{\partial f}{\partial z} =$$

Partial derivatives

• Exercise: Compute the partial derivatives

$$f(x, y, z) = xyz - z^2 - y^2$$

$$f(x, y, z) = e^{x+y} - \sin(x+z)$$

Gradient

The partial derivatives become the component of a vector we call the gradient

$$grad \cdot f(x, y, z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$$

- For example: $f(x, y, z) = (x y)^2 + z^2 z$
- $grad \cdot f(x, y, z) = [2(x y), 2(y x), 2z 1]$

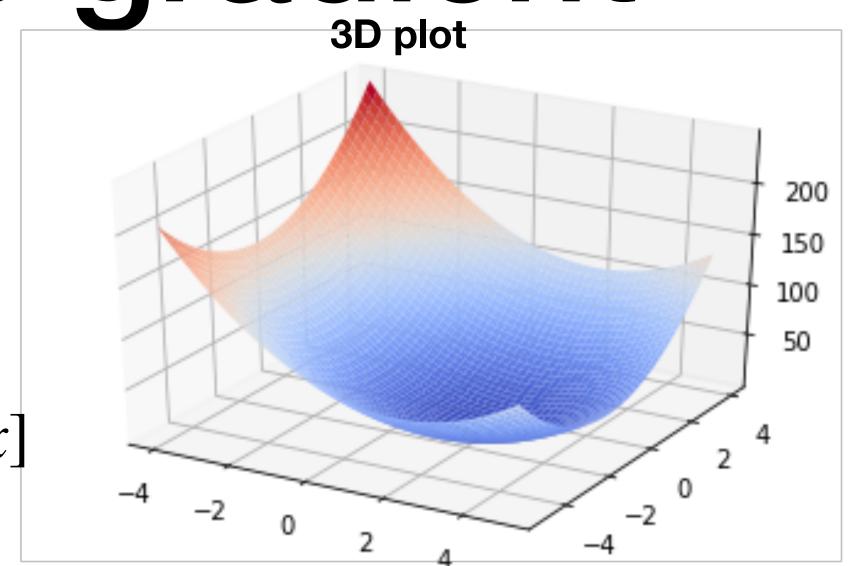
Interpreting the gradient

$$f(x,y) = 4(x-2)^2 + 4(y+1)^2 - 0.1xy$$

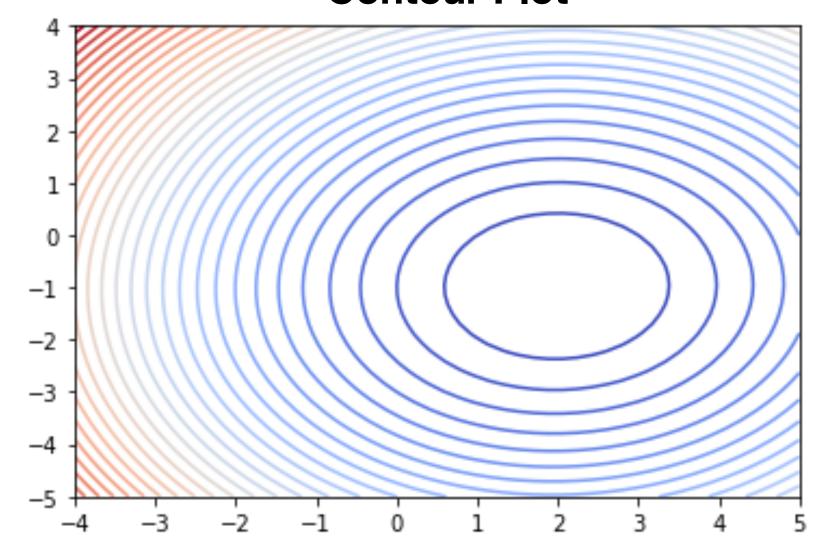
$$grad \cdot f(x, y) = [8(x - 2) - 0.1y, 8(y + 1) - 0.1x]$$

$$grad \cdot f(0,0) = [-16,16]$$

$$grad \cdot f(2, -1) = [0.1, -0.2]$$



Contour Plot



Gradient

$$grad \cdot f(x, y, z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]$$

- In this case, the function has 3 variables. Therefore the gradient is a vector of size 3
- If the gradient has n variables, it is a vector of size n
- More precisely, the gradient of f is itself a function that return a vector

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$grad \cdot f: \mathbb{R}^n \to \mathbb{R}^n$$

$$grad \cdot f(x_1, x_2, \dots, x_n) = [g_1, \dots, g_n]$$

What is the equivalent of second derivative for multivariate functions?

• It is the Hessian Matrix:

$$\frac{\partial^2 f}{\partial x^2} \qquad \frac{\partial^2 f}{\partial x \partial y} \qquad \frac{\partial^2 f}{\partial x \partial z}$$

$$\frac{\partial^2 f}{\partial x \partial y} \qquad \frac{\partial^2 f}{\partial y^2} \qquad \frac{\partial^2 f}{\partial y \partial z}$$

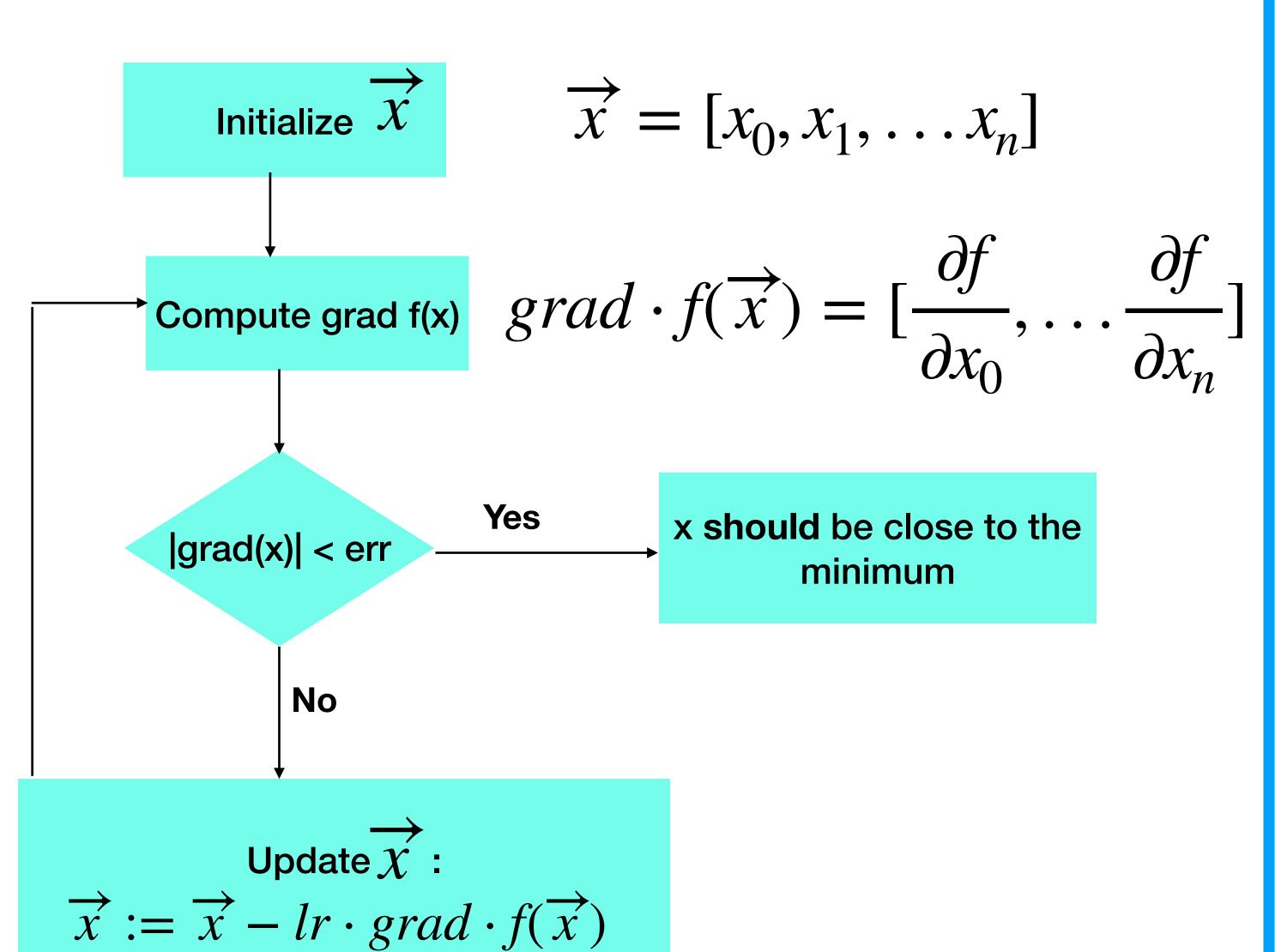
$$\frac{\partial^2 f}{\partial x \partial z} \qquad \frac{\partial^2 f}{\partial y \partial z} \qquad \frac{\partial^2 f}{\partial z^2}$$

 But <u>for your information</u>, this would be the equivalent of the "High School" minimization when we have several variables:

To minimize f(x, y, z):

- 1. Compute gradient of f(x, y, z)
- 2. Compute hessian of f(x)
- Find x, y, z such that grad f(x,y,z) = 0
- 4. If hessian of f(x,y,z) is definite positive then (x,y,z) is a local minimum of f

Gradient Descent algorithm



$$f(\overrightarrow{x}) = (x_0 - x_1)^2 + x_2^2 - x_2$$

$$grad \cdot f(\overrightarrow{x}) = [2(x_0 - x_1), 2(x_1 - x_0), 2x_2 - 1]$$

$$lr = 0.2$$

$$\overrightarrow{x} = (0,1,0)$$

$$grad \cdot f(\overrightarrow{x}) = [-2,2,-1]$$

$$\vec{x} = (0.4, 0.6, 0.2)$$

$$grad \cdot f(\vec{x}) = [-0.4, 0.4, -0.6]$$

$$\overrightarrow{x} = (0.41, 0.43, 0.51)$$

$$grad \cdot f(\overrightarrow{x}) = [-0.04, 0.04, 0.01]$$

Gradient Descent Algorithm

- You can see that, in the case of the gardient descent, the algorithm is the same for univariate functions and multivariate functions
- It is a simple algorithm, but it scales very well
- There exists many variations of it:
 - Gradient Descent with momentum
 - Stochastic Gradient Descent
 - Adagrad, Adadelta, Adam, ...

Gradient Descent with Momentum

Compute a "gradient with momentum" at each iteration:

$$gm_t = 0.6grad \cdot f(\overrightarrow{x}) + 0.4gm_{t-1}$$

$$\overrightarrow{x} := \overrightarrow{x} - lr \cdot gm_t$$

Stochastic Gradient Descent

- What happens if the gradient is noisy?
- That is, we can only compute a value that is equal to the true gradient "on average"?
 - A bit like if you are drunk and trying to get home

Stochastic Gradient Descent

- What happens if the gradient is noisy?
- That is, we can only compute a value that is equal to the true gradient "on average"?
 - A bit like if you are drunk and trying to get home
- It turns out it works.
 - But you have to decrease your learning rate over time to stabilize $lr = \frac{lr_0}{\sqrt{(t+1)}}$

$$lr = \frac{tr_0}{\sqrt{(t+1)}}$$

- Convergence will be slower
- Very interesting because a noisy gradient can be million times faster to compute than a "true" gradient

Optimization libraries

- You can also minimize a function by using a specialized library
- It gives you access to more sophisticated minimization algorithms
- However these more sophisticated algorithms do not scale as well as Gradient Descent
 - Which is one Gradient Descent and its variants are still the main tool for large scale Machine Learning (In particular, Deep Learning)