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What we are going to do
• Given a function of one variable, find 

practically the value for which it is 
minimum


• a.k.a “univariate function”


• You should have seen how to do that for 
simple functions in High School


• Given a function of several variables, find 
the value for which it is minimum


• a.k.a “multivariate function”

f(x) = x2 − x
f : ℝ → ℝ

f : ℝ3 → ℝ
f(x, y, z) = (x − y)2 + z2 − z

arg min
x

f(x)

arg min
x,y,z

f(x, y, z)

x = 0.5
f(x) = − 0.25



Why we do it?
• Actually, almost all algorithms of supervised machine 

learning can be reduced to finding the minimum of a function 
of several variable


• The idea is that we will have a function called the loss that 
measure the difference between our system output and the 
training example


• By minimizing the loss, we make our system learn to reproduce 
the examples correctly


• Note that “function of several variables” can mean “millions of 
variables”


• Some extremely big neural networks might have a loss 
function with billions of variable


• Fortunately, it is conceptually not more difficult to minimize a 
function of 2 variables or a function of one million variables



Minimizing a function of one 
variable



The “High School” view of minimization
• Let us start by recalling what we learn in high school


• What you learned exactly might vary depending on your country of 
education and majors, but hopefully you all have some experience with 
this

To minimize f(x): 
1. Compute first derivative f’(x) 
2. Compute second derivative f’’(x) 
3. Find x0 such that f’(x0) = 0 
4. If f’’(x0) > 0 then x0 is a local minimum of f

f(x) = x2 − x
f : ℝ → ℝ

f′�(x) = 2x − 1
f′�′�(x) = 2

x0 = 0.5
Note: It is not how we will 

minimize functions in practice



Local minimum, local maximum
• Note that the condition on the second derivative is important to distinguish minimums from maximum


• Also, the solution could be only a local minimum



• It is even possible for derivative to be 0 even if the function has no 
minimum



About derivatives

• Does everybody remember how to compute derivatives? 
• Do not panic if you don’t.  
• In practice, we will have functions that can compute the derivatives 

automatically for us 
• Still, you should understand at least how they work 
• we will review briefly the basics



Computing derivatives
f(x) f’(x)

sin(x) cos(x)

cos(x) -sin(x)

log(x)

xn nxn−1

ex ex

1
x

g(h(x)) h′�(x) × g′�(h(x))

g(x) × h(x) g′�(x) × h(x) + g(x) × h′�(x)

g′�(x) + h′�(x)g(x) + h(x)

α ⋅ h(x) α ⋅ h′�(x)

Composition rule

Leibniz rule

Linearity I

Linearity II

sin(2x)
2 × log(x + 1)

sin(x) + log(x)

ex

x

Exercise:



What is a derivative?
• One definition: the coefficient of the best linear approximation of a function at x 
• If h is small:  
• Example:  
• if we know that  
• How much is            ? 
• Supposing we cannot compute a log again 

• 2.4 = 2.3 + 0.1 
• We can approximate: 

• Which gives: 

• The true value is: log(2.4) = 0.875468...

f(x + h) ≈ f(x) + h ⋅ f′�(x)

log(2.3) = 0.832909...
log(2.4)

log(2.4) ≈ log(2.3) + 0.1 ×
1

2.3

log(2.3) + 0.1 ×
1

2.3
= 0.876387...



What is a tangent?
• The line that best approximate a line at a point



What is a derivative?

• The derivative is also the coefficient of the tangent to the graph 
of the function.

f(x) = x^2 -4*x + 5 f’(x) = 2*x -4

f’(0) = -4



Tangent and derivative
f(x + h) ≈ f(x) + h ⋅ f′�(x)



Derivative and minimum
• Intuitively, this shows you why the derivative should be zero at a minimum



Derivative and minimum
• The derivative tells us in which direction move to find the minimum

x = 0
f′�(0) = − 1

x = − 1
f′�(−1) = − 3

x = 0.5

f′�(1) = 1
x = 1

f′�(0.5) = 0If derivative at x is negative, minimum is on the right  
(we need to increase x to get closer to the minimum)

If derivative at x is positive, minimum is on the left  
(we need to decrease x to get closer to the minimum)

If derivative at x is zero, x should be a minimum  
(not necessarily in theory, but in our cases, it will be)



Gradient Descent algorithm
Initialize x

Compute f’(x)

Update x: 
x := x − lr ⋅ f′�(x)

|f’(x)| < err x should be close to the 
minimum 

lr: learning rate

Should be a positive value


If too large: no convergence

If too small: very slow convergence 

Yes

No

 err would be the acceptable error 

In practice we will often use different


ways of checking we have a good

approximation of the minimum

lr = 0.2


x = 0

f’(x) = -1


x=0.2

f’(x) = -0.6


x=0.32

f’(x) = -0.36


x = 0.392

…

…

…

…


x=0.493

f’(x) = -0.014


STOP?

f(x) = x2 − x

arg min
x

f(x) = 0.5
f′�(x) = 2x − 1



Gradient Descent Algorithm

• Gradient descent works well even when we have functions of millions of 
variable 
• This is why it is so useful for Machine Learning and Neural Networks 
• Other methods will not be practical in such settings 
• Convergence will depend on the choice of a good learning rate 
• In experiments, a good deal of time is often spent finding an optimal 

learning rate 
• Too large learning rate: no convergence (ie. the system learn nothing) 
• Too small learning rate: slow convergence (ie. the system takes a 

long time to learn)



Minimizing a function of 
several variables

http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/
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Functions of several variables
• A function of several variables is just that: a function which has several 

variables


• Like before, we want to find its minimum:

f : ℝ3 → ℝ
f(x, y, z) = (x − y)2 + z2 − z

arg min
x,y,z

f(x, y, z) = (0,0,0.5)

f(0,0,0) = 0
f(1,2,3) = 7
f(−1,2,2) = 11
f(0,1,1) = ?
f(2,2,0) = ?



Vectors
• What are vectors?


• You probably have used vectors in Physics classes to represent force and speed


• 3-dimensional vectors: [2.3, 4.5, -1]


• In Machine Learning, we also use them a lot


• Except that they can have more than 3 dimensions


• 5-dimensional vector: [-1, 3, 4.1 ,5.2, 4]


• We often note the set of all n-dimensional vectors ℝn

[1,2.1,4.1, − 1, − 1] ∈ ℝ5



Vectors (Continued)

• For now, we only need to know the following about vectors:


• A n-dimensional Vector is a list of n numbers


• We can add 2 vectors (if they have the same dimension)


• We can multiply a vector by a number 

[2.1,3.4,1.1,3.2] + [−1,2.1,3.1, − 2] = [1.1,5.5,4.2,1.2]

0.5 × [2,3, − 1, − 2] = [1,1.5, − 1.5, − 1]

[2.1,3.4] + [−1,2.1,3.1, − 2] =



Vectors(Continued)

• We will usually denote a vector by a letter with an arrow on it: 


• We denote the ith component of      by xi 


• If 


• Then we have x0=1, x1=2.2, x2=-1, x3=4

⃗x
⃗x

⃗x = [1,2.2, − 1,4]



Vectors: Exercise

• Dimensions of                  ?


• Values of x1, y2, z0, y0?


• Compute:

⃗x = [1,5, − 2,0.5]

⃗y = [2,2,10,10]
⃗z = [3, − 3,0]

⃗x , ⃗y , ⃗z

⃗x + 0.5 × ⃗y
⃗x + ⃗y

⃗y + ⃗z



Vectors and Numpy
• In Python, Numpy arrays are a 

convenient way to represent 
vectors


• x = np.array([1, 5, -2, 0.5])


• x[0]  == x0 == 1


• x[1] == x1 == 5


• Vector operations: x+0.5*y

⃗x = [1,5, − 2,0.5]



Vectors and Multivariate functions
• For now, we have represented the variables of a multivariate function with the letters x, y, z as 

in: 


• In practice, we can have any number of variables. So it is more convenient to use: 


• x0 (instead of x) , x1 (instead of y),  x2   (instead of z),  x3 .. xn (if we need more than 3 
variables)


• We can also the vectorial notation to represent all of the variables as one vector variable:


• So, keep in mind that the 3 following expressions actually refer to the same function:


•

f(x, y, z) = (x − y)2 + z2 − z

f(x0, x1, x2) = (x0 − x1)2 + x2
2 − x2

f( ⃗x ) = (x0 − x1)2 + x2
2 − x2

f(x, y, z) = (x − y)2 + z2 − z

f( ⃗x ) = (x0 − x1)2 + x2
2 − x2

f(x0, x1, x2) = (x0 − x1)2 + x2
2 − x2

⃗x = [x0, x1, x2]



Partial derivatives
• What is the equivalent of our “high school” derivatives when we have several 

variables?


• One part of the answer is partial derivatives


• Partial derivatives are computed by choosing one variable and fixing the others


• Indeed, if we choose y, and fix x and z, we can see f(x, y, z) as a function of one 
variable and compute its derivative


•

f(x, y, z) = (x − y)2 + z2 − z
∂f
∂x

= 2(x − y)
∂f
∂y

= 2(y − x) ∂f
∂z

= 2z − 1



Computing the partial derivatives
f(x, y, z) = (x − y)2 + z2 − z

∂f
∂x

=
∂f
∂y

= ∂f
∂z

=



Partial derivatives
• Exercise: Compute the partial derivatives

f(x, y, z) = xyz − z2 − y2

f(x, y, z) = ex+y − sin(x + z)



Gradient
• The partial derivatives become the component of a vector we call the 

gradient


• For example:


•

grad ⋅ f(x, y, z) = [
∂f
∂x

,
∂f
∂y

,
∂f
∂z

]

f(x, y, z) = (x − y)2 + z2 − z

grad ⋅ f(x, y, z) = [2(x − y),2(y − x),2z − 1]



Interpreting the gradient

f(x, y) = 4(x − 2)2 + 4(y + 1)2 − 0.1xy

grad ⋅ f(x, y) = [8(x − 2) − 0.1y,8(y + 1) − 0.1x]

Contour Plot

3D plot

grad ⋅ f(0,0) = [−16,16]

grad ⋅ f(2, − 1) = [0.1, − 0.2]



Gradient

• In this case, the function has 3 variables. Therefore the gradient is a vector 
of size 3


• If the gradient has n variables, it is a vector of size n


• More precisely, the gradient of f is itself a function that return a vector

grad ⋅ f(x, y, z) = [
∂f
∂x

,
∂f
∂y

,
∂f
∂z

]

f : ℝn → ℝ grad ⋅ f : ℝn → ℝn

f(x1, x2, . . . , xn) grad ⋅ f(x1, x2, . . . , xn) = [g1, . . . , gn]



What is the equivalent of second derivative for 
multivariate functions?

• It is the Hessian Matrix:


• But thankfully, we will not need to use it


• But for your information, this would be the equivalent of the “High School” 
minimization when we have several variables:


•

∂2f
∂x2

∂2f
∂y2

∂2f
∂z2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂x∂z

∂2f
∂y∂z

∂2f
∂x∂y

To minimize f(x, y, z): 
1. Compute gradient of f(x, y , z) 
2. Compute hessian of f(x) 
3. Find x, y, z such that grad f(x,y,z) = 0 
4. If hessian of f(x,y,z) is definite positive then 

(x,y,z) is a local minimum of f



Gradient Descent algorithm
Initialize    

Compute grad f(x)

Update      : 

x := x − lr ⋅ grad ⋅ f( x )

|grad(x)| < err x should be close to the 
minimum 

Yes

No

x = [x0, x1, . . . xn]

grad ⋅ f( x ) = [
∂f
∂x0

, . . .
∂f
∂xn

]

x

x
f( ⃗x ) = (x0 − x1)2 + x2

2 − x2

⃗x = (0,1,0)

grad ⋅ f( ⃗x ) = [2(x0 − x1),2(x1 − x0),2x2 − 1]

grad ⋅ f( ⃗x ) = [−2,2, − 1]

⃗x = (0.4,0.6,0.2)
grad ⋅ f( ⃗x ) = [−0.4,0.4, − 0.6]

lr = 0.2

⃗x = (0.41,0.43,0.51)
grad ⋅ f( ⃗x ) = [−0.04,0.04,0.01]



Gradient Descent Algorithm
• You can see that, in the case of the gardient descent, the algorithm is the 

same for univariate functions and multivariate functions


• It is a simple algorithm, but it scales very well


• There exists many variations of it:


• Gradient Descent with momentum


• Stochastic Gradient Descent


• Adagrad, Adadelta, Adam, …



Gradient Descent with Momentum

• Compute a “gradient with momentum” at each iteration:


•
gmt = 0.6grad ⋅ f( ⃗x ) + 0.4gmt−1

Update      : 

x := x − lr ⋅ gmt

x



Stochastic Gradient Descent

• What happens if the gradient is noisy?


• That is, we can only compute a value that is equal to the true gradient “on 
average”?


• A bit like if you are drunk and trying to get home



Stochastic Gradient Descent
• What happens if the gradient is noisy?


• That is, we can only compute a value that is equal to the true gradient “on average”?


• A bit like if you are drunk and trying to get home


• It turns out it works.


• But you have to decrease your learning rate over time to stabilize


• Convergence will be slower


• Very interesting because a noisy gradient can be million times faster to compute 
than a “true” gradient

lr =
lr0

(t + 1)



Optimization libraries
• You can also minimize a function by using a specialized library


• It gives you access to more sophisticated minimization algorithms


• However these more sophisticated algorithms do not scale as well as Gradient 
Descent


• Which is one Gradient Descent and its variants are still the main tool for large 
scale Machine Learning (In particular, Deep Learning)


