Neural Networks with Fully
Connected Layers in Practice

Fundamentals of Artificial Intelligence
Fabien Cromieres

Kyoto University
http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/

Program for today:

* 1- Discuss the mathematical representation of Fully-connected layers in
Neural Networks

e 2- Define and train a real Neural Network in a Jupyter Notebook

Neural Network Architectures

e \We are still here:

Today!

Fully Connected Layers
Feed-Forward and — Multi-Layered with
Architecture can be Convolutional Layers

N

Recurrent

Feed-Forward networks with fully connected layers

* Therefore, we are going to consider this type of Neural Network:

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

N
Input 1 %@ 4
\VayY .

Input2 = LSl

euron

euron

Feed-Forward networks with fully connected layers

* Therefore, we are going to consider this type of Neural Network:

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

\
v @D,
\VaY .

Income = Gl

euron

euron

@—)@9 Vote

Keeping in mind what this type of graph mean

O,(income, age) = 0(6’6‘ + 9‘14 X income + (9‘24 X age) O (income, age) = 0(6’OC + 6’1C X Oy + 62C X Op)

0 Neuron C
o A O
Age . Logls:t_lc ’ Logistic C Neuron E
Classifier Classifier \
Neuron A OE

Logistic R

Op(income, age) = 0(6’5 + 6’{5 X O+ 6’5 X Op)

Neuron D
Neuron B

ncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «913 X income + 6’5 X age)

Logistic
0 Classifier
B

Op(income, age) = 0(6’5) + 6’? X Oy + 6’5 X Op)

Keeping in mind what this type of graph mean

O,(income, age) = 0(6’6‘ + «9‘14 X income + (9‘24 X age) O (income, age) = 0(6’OC + 6’1C X Oy + 62C X Op)

Age = 32 Neuron C

04 = 0.34 0,. = 0.45
Logistic § Logistic c— Neuron E
Classifier Classifier \
Neuron A Logistic OE ~ O'8>9 Vote
Classifier

Logistic Og(income, age) = 5((95j + 6’{5 X O+ 6’5 X Op)
Classifier OD = (.68

>

Neuron D

Income = 120 Neuron B

lncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «913 X income + 6’5 X age)

Op(income, age) = a(é’é) + 6’? X Oy + 6’5 X Op)

Keeping in mind what this type of graph mean

—> Each Neural Network architecture defines a function of the input with parameters ©

O,(income, age) = 0(6’6‘ + «9‘14 X income + (9‘24 X age) O (income, age) = 0(6’OC + 6’1C X Oy + 62C X Op)

Neuron C
Age = 32
ge .0, = 0.34 0. — 045
Age . Logls:t_lc W Logistic C ' Neuron E
Classifier Classifier
Neuron A OE = 0.89

> Vote

Logistic
Classifier

Logistic Og(income, age) = 5((95j + 6’{5 X O+ 6’5 X Op)
Classifier OD = (.68

Neuron D

Income = 120 Neuron B

lncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «913 X income + 6’5 X age)

Op(income, age) = a(é’é) + 6’? X Oy + 6’5 X Op)

Feed-Forward networks with fully connected layers

—> Each Neural Network architecture defines a function of the input with parameters ©

* Therefore, this is just a visual way of defining a complicated parameterized

function of Vote given Age and Income:
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Neuron

Age — ‘ / Neuron
- Ol X2
VA

NS
}:\“, Neuron

=N @
@

@—)@9 Vote

Income 9 Neuron Neuron

Parameters

e If a neuron has N inputs, it has N+1 parameters

X Logistic O
2 Classifier

O(xy, X5, X%3) = 0(0y + 0; X x; + 0, X x5 + 05 X Xx3)

Parameters

e If a neuron has N inputs, it has N+1 parameters

e Visually, we can associate a parameter to each input, and show 0o separately

Logistic
Classifier

Parameters: Terminology

* 04, 02, 63 are often called the weights of the neuron

e Opis often called the bias of the neuron

Logistic
Classifier

Parameters: Terminology

* B4, B2, B3 are often called the weights of the neuron
* They are therefore often also noted w1, wa, ws
* Opis often called the bias of the neuron

e |tis often noted b

Logistic

Classifier

Ox{, X5, X3) = 6(b+w; XX; + Wy X Xy + W3 X X3)

Linear Algebra

* |n order to discuss the way Neural Networks are actually implemented, we need to
discuss some mathematical concepts

* We discuss:
e \ector scalar products (a.k.a inner product)
 Matrices
 Matrix-vector multiplication
 Matrix-Matrix multiplication

 Warning: it is a bit ambitious to explain that in 30 minutes. Hopefully you understand most
of It.

Row Vectors and Column Vectors

 \We have seen that vectors are just a “list” of numbers

 We are actually going to distinguish 2 “types” of vectors: row vectors
and column vectors

0.2 (5-dimensional)
Row vector:
3.6
(5-dimensional)
Column vector: 2 1 0.2 36 21 5.3 -2.2
5.3

-2.2

Column vectors

e Column vectors of the same dimension can be added

(5-dimensional) (5-dimensional) (5-dimensional)
Column vector Column vector Column vector
0.2 1.1 1.3
3.6 -2.0 1.6
2.1 1.1 — 3.2
5.3 -5.3 0.0

Column vectors

* Column vectors can be multiplied by a number

(5-dimensional) (5-dimensional)
Column vector Column vector
1.1 2.2
-2.0 -4.0
X 1.1 — 2.2
-5.3 -10.6

Row vectors

 Row vectors have the same operations as Column vectors

 They can be added:

(5-dimensional) (5-dimensional) (5-dimensional)
Row vector Row vector Row vector

0.2 36 21 53 -22 + 11 20 11 -53 -10 = 1.3 16 32 0.0 -3.2

 They can be multiplied by a number:

2 O X 02 36 21 53 -22 — 04 7.2 42 106 -4.4
H

Row vectors and Column Vectors

 Row vectors and Column vectors cannot be added together

(5-dimensional)
Column vector

2.2
(5-dimensional)

Row vector 4.0

02 36 21 53 -2.2 +

2.2

X

-10.6

-2.0

Transposition

e However, row vectors can be transformed in column vectors by an
operation called transposition (and vice-versa)

(5-dimensional)
Column vector

(5-dimensional) 1.1
Row vector
-2.0
11 -20 11 -53 -1.0
1.1
-5.3

1.1

* [ransposition is usually noted with a T In exponent:

-2.0 1.1

-5.3

-1.0

Transposition

T

1.1

-2.0

1.1

-5.3

-1.0

1.1

-2.0

1.1

-5.3

-1.0

T

1.1

-2.0 1.1

-5.3

-1.0

Inner product (a.k.a Scalar product)

* \WWe can compute the inner product of a row vector and a column vector to obtain a single
number

* [t consists in taking the product of the number dimension by dimension and then taking the
sum

(3-dimensional)
Column vector

(3-dimensional) 1.5
Row vector

2 00 10 O® 10 = 2X15+0x1+-1x2 = 1.0

2.0

Inner product (a.k.a Scalar product)

e The vectors should have the same dimension

* You should have the row vector on the left, and the column vector on the right

e (if it is the opposite, the operation is called outer product and gives a different result)

(3-dimensional)
Column vector

(3-dimensional) 1.5
Row vector

2 0.0 -1.0 ® 1.0 — 1.0

2.0

Inner product (a.k.a Scalar product)

1.5

o = 1.0

2.0

2 00 -1.0

You can try to visualize this as the
column vector lying down on the row
vector to produce the number

Inner product (a.k.a Scalar product)
by

= 1.0

3.0+00+-20 — 1.0

You can try to visualize this as the
column vector lying down on the row
vector to produce the number

Why inner product is important?

e |t allows us to express linear functions efficiently

e And remember that linear functions are one of the fundamental
components of Machine Learning

Linear regression Logistic Classifier Neuron (same formula as Logistic Classifier)
Jx,y) =60+ 0, Xx+6, Xy score(x,y) =0y + 0, Xx+0,Xy output(x,y) = o(0y+ 0, X x + 0, X y)

prediction = o(score)

Why inner product is important?

vote(age, income) = o(0y + 0, X age + 0, X income)

Oo

© == 0Oy+ 0, Xincome+ 0;Xage

1 Income age

©2

Oo

vote(age, income) = () (1 income age @ o)

O

Representing many inner product at once

vote(age, income) = o(0y + 0, X age + 0, X income)

1 Incomep ageo
1 Incomej age1 —
1 Incomez2 agez o,

1 Incomes ages

Representing many inner product at once

vote(age, income) = o(0y + 0, X age + 0, X income)

1 Incomep ageo

1 Incomej age1

1 Incomez2 agez

1 Incomes ages

Representing many inner product at once

vote(age, income) = o(0y + 0, X age + 0, X income)

® ®

INconieo

INconies

Incornes

1 INncomes

o)

0, + 0, X incomey + 0, X age,
0, + 0, X income, + 0; X age,
0, + 0, X income, + 0, X age,

0, + 0, X income; + 0, X age;

Representing many inner product at once

vote(age, income) = o(0, + 0, X age + 6, X income)

3-dimensional 3-dimensional
Row vectors Column vector 4-dimensional Column vector
(4 times)
4 iInputs ¢ —
Parameters of

one neuron

This represents the computation of the score output
of a single neuron for 4 inputs at the same time!

Representing many inner product at once

vote(age, income) = o(0, + 0, X age + 6, X income)

3-dimensional 3-dimensional

Row vectors Column vector 4-dimensional Column vector
(4 times)

This Is called a 4x3 matrix

Batch of
4 iInputs

Representing many inner product at once

vote(age, income) = o(0, + 0, X age + 6, X income)

3-dimensional 3-dimensional
Row vectors Column vector 4-dimensional Column vector
(4 times)

This Is called a 4x3 matrix

Representing many inner product at once

vote(age, income) = o(0, + 0, X age + 0, X income)

3-dimensional 3-dimensional
Row vectors Column vector 2-dimensional Column vector
(2 times) 1
Batch of 1 10 20 ‘ _ N
2 i“pUtS 2 E— m
1 30 40

-1

Parameters of one
Neuron

Representing many inner product at once

vote(age, income) = o(0y + 0, X income + 0, X age)

OAo LN

Yot Y —

incomeog ageo ‘ OA; OB wm 0+ 9{‘ X income + «9? X age 0, + Hf X income + Hf X age
OA; ©B,

Parameters for
two different
neurons A and B

Representing many inner product at once

vote(age, income) = o(0y + 0, X age + 0, X income)

3-dimensional
Column vector
(2 times)

3-dimensional
Row vectors

OAo LN

2-dimensional Row vector

1 incomeg ageo ' OA; OB |mmm 6+ 9{‘ X income + (9‘24 X age 0, + 6’{3 X income + 6’5 X age

OA OB,

This Is called a
3x2 matrix

Representing many inner product at once

vote(age, income) = o(0y + 0, X age + 0, X income)

3-dimensional
Column vector
(2 times)

3-dimensional

Row vectors 0 0

1 100 50 @ ° 1

Batch of 1 1
1 input

Parameters of two
Neurons

2-dimensional Row vector

Representing many inner product at once

e If we combine the 2 aspects of having several inputs and several neurons,
we have what is called a matrix multiplication

4x3 matrix 3x2 matrix 4x2 matrix

Outputs of the
2 neurons for each of the 4 inputs

Parameters for
2 neurons

Batch of 4 inputs

Matrix Multiplication

4x3 matrix 3x2 matrix 4x2 matrix

Parameters for

Batch of 4 inputs
2 heurons

Matrix Multiplication

4x2 matrix

Parameters for

Batch of 4 inputs
2 heurons

INCotleo o

Incolhe e1

Incoines e>o

1 Incormes ages

Batch of 4 inputs

Matrix Multiplication

4x2 matrix

AL pAy A
B | S 0, + 07 X incomey + 05 X age,,

_ 0 + 02 X income, + 05 X age,
OA ©B; ——
6’{} + 0 X income, + 05 X age,

OA; OB,

0 + 0 X income; + 05 X age,

Parameters for
2 neurons

B B ;
0, + 60, X income, +
0, + 07 X income; +
B B ;
0, + 0, X income, +

6, + 07 X incomes +

Matrix Multiplication

* We represent many inputs as a matrix
* \We represent many neurons as a matrix

* Matrix multiplication compute the output score of all the neurons for all the inputs

4x3 matrix 3x2 matrix 4x3 matrix
Parameters for Outputs of the

Batch of 4 inputs 2 NEUrons 2 neurons for each of the 4 inputs

Matrix Multiplication

3x2 matrix 2x2 matrix
2x3 matrix
Parameters for Outputs of the

Batch of 2 inputs 2 NEUrons 2 neurons for each of the 2 inputs

Computing the output of many neurons for many inputs

* In practice, we separate the weights from the bias

4x3 matrix 4x3 matrix
Bias of 2 neurons

Outputs of the
2 neurons for each of the 4 inputs

Weights of 2 neurons

Batch of 4 inputs

Computing the output of many neurons for many inputs

Expanded to fit Bias vector

4x3 matrix number of input -
3x2 matrix /

Weights matrix 2x2
(2 inputs and 2 neurons)

Batch input (4 inputs) 4x3 matrix

Matrix Multiplication

Bias for
2 heurons
1 O
2x2 matrix
2x2 matrix
2x2 matrix
100 50 2 1
@ —
10 20 1 1
Weights for Score outputs of the

Batch of 2 inputs 2 NEUrons 2 neurons for each of the 2 inputs

* |mportant: using these matrix representations only work if all the neurons have
the same input and are fully connected

 Then, in practice, a Fully Connected layer of N neurons with K input can be
represented by a matrix of weights W of shape KxN, and a bias vector b of
dimension N.

Feed-Forward networks with fully connected layers

 Then, in practice, a Fully Connected layer of N neurons with K input can
be represented by a matrix of weights W of shape KxN, and a bias vector
b of dimension N.

Layer 1 Layer 2 Layer 3 Weights for layer 3: Bias for layer 2:

Income — Neuron Neuron

5 -2 4 1

-10 501 1

1
3 4 06 7
5 0 0 3 -1

Neuron

/
,\ l'; Neuron

Neuron ‘

\\

Layer 4 Layer 5

Weights for

1 -2 4
layer 2: 3 4 0 Bias for Iayer2

1050

Random restarts

 Because the weights of a neural network are initialized randomly, the
result of a training will change every time we reinitialize the network

* Therefore, to obtain best performances, it is common to train a networks
several times with different random initializations, and keep the best result

Regularization methods for Neural Network

 When we train a network with many neurons, the danger of overfitting Is
large

 There are a few technics that are very efficient at preventing this:
* Early Stopping
 Dropout
 Weight Decay

e Stochastic Gradient Descent

Early stopping

* \We keep a validation set separate from the training data
 We fix a patience number (typically patience = 10 or 20)

* During training, if we see no improvement on validation set after patience
measures, we stop the training

Dropout

* During training, we add random noise to disturb the network

e In practice, we randomly “cut” a certain proportion of connections
(typically 10% to 50%)

Weight Decay

* At every iteration in the training, the weights are scaled down by a factor d
<1

 Equivalent to a L2-Regularization

Stochastic Gradient Descent

e Instead of computing the gradient of the loss for all the training data, we
compute it for a subsampled part of the training data

* This is actually done anyway to get faster training

 But it is also beneficial to prevent overfitting even if you could afford to
compute the gradient for all the examples at once.

