
Learning Simple Functions I
Fundamentals of Artificial Intelligence


Fabien Cromieres

Kyoto University


http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/



Learning a function from examples
• Main idea today: Learning a function from examples

We are given example values of f(x) for some x

x f(x)

-3.324820 0.182204

1.294681 0.962122

-4.141596 0.841473

2.928655 0.211333

-2.374387 -0.694126

4.555678 -0.987746

…… ……

What would be the value of the function for all x?

Learning



Learning a function from examples
• We might not always want that the function we learn match exactly the examples


• In practice, we might have to consider “imperfect” or “noisy” examples

Learning

What we are given: What we want to learn :



Predicting from examples
• This can also be seen as a prediction task


• Given examples of the value of the function,  can we predict its value for points not given 
in the example? 

Predict

What we are given:
We predict the value at 3.5 should be -0.45 



Example: influence of smoking on life expectancy
• For a more practical context, let us consider some Health-related situation


• Let us suppose we gathered the data from many persons about:


• How many cigarets they were smoking per day


• How old they died


• Now, knowing that somebody smokes x cigarets per day, we would like to predict what age he is most likely to die

daily 
cigarets

age of 
death

32.0 73.471399

7.0 88.237207

30.0 82.077261

17.0 85.576741

27.0 76.190373

15.0 84.899030

20.0 72.598501

28.0 77.018773

…. …..

What age am I most likely  to die if I 
smoke 10 cigarets per days?

Age

Cigarets



Linear regression
• One possible answer is to do a linear regression 

• We assume there is a linear relation between loss in life expectancy and number of cigarets smoked


• Noting the life expectancy (or age of death) as age and the number of cigarets smoked as cig, we suppose:

age = θ0 + θ1 × cig
Unknown Parameters

• The examples points are not exactly on a line


• This is because cigarets are just one of many things that influence life expectancy


• Two persons smoking the same number of cigarets might have different health 
condition, eating habits, do different amount of sport, etc… But we do not have 
this information in our data.


• This is why we said earlier we expect examples to be noisy: in general, we do not 
know all of the hidden factors explaining the output.

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets



Linear regression
• The linear regression consist in finding the good values for the parameters


• In our Machine Learning terminology, we could also say we are “learning” the function 
that compute the life expectancy from the number of cigarets smoked

age = θ0 + θ1 × cig

• Now, we can make our prediction:


• What age am I most likely to die if I smoke 10 
cigarets per day?


• 90-0.7x10  = 83 year old

θ0 ≈ 90 θ1 ≈ − 0.7
Age

Cigarets



Linear Regression
• Linear regression is a common tool in statistics


• It can also be seen as a simple Machine Learning task


• Point of view is a bit different (exagerating a bit):


• In statistics, we are also interested in interpreting the parameters, like the slope of the linear 
approximation


• Smoking one additional pack of cigaret is associated with losing 2.5 years of life expectancy


• In Machine Learning, we do not care so much about the parameters. We care about the 
“predictive” power


• If I know how many pack of cigarets a person smoke, can I predict what age she will die?



Linear regression
• How are we going to find the values of the parameters Θ0,Θ1  ?


• We need a criterion to evaluate the quality of Θ0,Θ1. age = θ0 + θ1 × cig

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets
θ0 ≈ 65 θ0 ≈ 70θ1 ≈ 0.7 θ1 ≈ 0



Linear regression
• How are we going to find the values of the parameters Θ0,Θ1  ?


• We need a criterion to evaluate the quality of Θ0,Θ1. age = θ0 + θ1 × cig

θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets
θ0 ≈ 65 θ0 ≈ 70θ1 ≈ 0.7 θ1 ≈ 0



Mean Squared Distance

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• We consider the distance between the examples and the model 
predictions

Age

Cigarets



Mean Squared Distance

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• We consider the distance between the examples and the model 
predictions

Age

Cigarets



Mean Squared Distance

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7

• We consider the distance between the examples and the model 
predictions

Person 7 in our data was smoking 36 cigarets per days,  
and died at age 69

Our model, with the given  Θ0,Θ1 was predicting  
he would die at age 87
Difference is: -18 years

Squared distance is 182 = 356

We compute this squared distance for all 
persons in our dataset and compute the mean

MeanSquaredDistance =
1
N

⋅ ∑
i

( f(xi) − yi)2

xi: number of cigarets smoked by person i 
yi: age person i died 

f(xi): prediction of our model



Mean Squared Distance

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

• The mean square distance now gives us a criterion for finding which 
parameters are best

Age

Cigarets

MeanSquaredDistance = 294.7 MeanSquaredDistance = 18.3



Minimizing the Mean Squared Distance

• Now, we know what we want: we want to find Θ0,Θ1 such that the  Mean 
Squared distance is the smallest possible

Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets

MeanSquaredDistance = 294.7 MeanSquaredDistance = 18.3

age = θ0 + θ1 × cig



The General Supervised Machine Learning setting:

LOSS

Examples

Model

Output

We have some examples

We have a model with some parameters

We have a loss function that compute 
the difference between the example and 

the prediction of our model

We minimize the loss to obtain the 
best parameters for our model



The General Supervised Machine Learning setting:

LOSS

Examples

Model

Output

Mean Square 
Distance

Data on cigarets 
smoked and age of 

death

Linear 
model

Prediction of 
age of death

We have some examples (cigarets/age data)

We have a model with some parameters 
(linear function with parameters Θ0,Θ1)

We have a loss function that compute the difference 
between the example and the prediction of our 

model (Mean Squared Distance)
We minimize the loss to obtain the 

best parameters for our model



Minimizing the Mean Squared Distance
• We saw one method for “easily” minimizing a function: gradient descent


• We can apply it here


• We need to express  the Mean Squared Distance as a function of Θ0,Θ1

MeanSquaredDistance =
1
N

⋅ ∑
i

( f(xi) − yi)2

xi: number of cigarets smoked by person i 
yi: age person i died 

f(xi): prediction of our model 
N: total number of persons in our data

age = θ0 + θ1 × cigf(xi) = θ0 + θ1 × xiWith
(just a rewriting of our model: )



Minimizing the Mean Squared Distance

• Therefore, the Mean Squared Distance as a function of Θ0,Θ1  is :

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

• What is the gradient?



Minimizing the Mean Squared Distance

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

• What is the gradient?



Minimizing the Mean Squared Distance

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

• What is the gradient?

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)



Gradient Descent for Linear Regression

• Knowing the gradient, what would be the formula for the gradient descent 
update?

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)
θ0 := ?

θ1 := ?



Gradient Descent for Linear Regression

• Knowing the gradient, what would be the formula for the gradient descent 
update?

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)
θ0 := θ0 − lr ×

2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)



Gradient Descent for Linear Regression

daily 
cigarets

age of 
death

32.0 73

7.0 88

17.0 85

Let us start with Θ0,Θ1  =0, lr=0.1 

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

θ0 := θ0−?

MSD(0,0) = ?

θ1 := θ1−?

Our data:



Gradient Descent for Linear Regression
daily 

cigarets
age of 
death

32.0 73

7.0 88

17.0 85Let us start with Θ0,Θ1  =0, lr=0.1 

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

θ0 := θ0 − lr ×
2
3

⋅ ((0 + 0 × 32 − 73) + (0 + 0 × 7 − 88) + (0 + 0 × 17 − 85)) = 16.4

MSD(0,0) =
1
3

⋅ ((0 + 0 × 32 − 73)2 + (0 + 0 × 7 − 88)2 + (0 + 0 × 17 − 85)2) = 6766

θ1 := θ1 − lr ×
2
3

⋅ (32 × (0 + 0 × 32 − 73) + 7 × (0 + 0 × 7 − 88) + 17 × (0 + 0 × 17 − 85)) = 293.1



Gradient Descent for Linear Regression

daily 
cigarets

age of 
death

32.0 73

7.0 88

17.0 85

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

Our data:

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?



Gradient Descent for Linear Regression
daily 

cigarets
age of 
death

32.0 73

7.0 88

17.0 85
Let us start with Θ0,Θ1  =0, lr=0.1 

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

θ0 := θ0 − lr ×
2
3

⋅ ((0 + 0 × 32 − 73) + (0 + 0 × 7 − 88) + (0 + 0 × 17 − 85)) = 16.4

θ1 := θ1 − lr ×
2
3

⋅ (32 × (0 + 0 × 32 − 73) + 7 × (0 + 0 × 7 − 88) + 17 × (0 + 0 × 17 − 85)) = 293.1

Instead, choose an example at random (ie. Person 2)

θ0 := θ0 − lr × 2 ⋅ ((0 + 0 × 7 − 88)) = 17.6 θ1 := θ1 − lr × 2 ⋅ (7 × (0 + 0 × 7 − 88)) = 123



Gradient Descent for Linear Regression

daily 
cigarets

age of 
death

32.0 73

7.0 88

17.0 85

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)

θ1 := θ1 − lr ×
2
N

⋅ ∑
i

xi × (θ0 + θ1 × xi − yi)

MeanSquaredDistance(θ0, θ1) =
1
N

⋅ ∑
i

(θ0 + θ1 × xi − yi)2

Our data:

Interesting question: can we get rid of the sigma?

The mean squared distance and its gradient are computed as an average over the data examples

If instead, we just compute the gradient for a random example, does it work?
YES!  (provided the learning rate is decreased over time:  

it is Stochastic Gradient Descent)



Stochastic Gradient Descent
• Stochastic gradient descent says that we can replace the average of the gradient 

over all examples by the gradient given by a randomly chosen example


• Slower Convergence


• But if we have one million examples: one million times faster to compute!

θ0 := θ0 − lr ×
2
N

⋅ ∑
i

(θ0 + θ1 × xi − yi) θ0 := θ0 − lr × 2 ⋅ (θ0 + θ1 × xi − yi)
Choose example i randomly

• In practice, we often average over a few examples (instead of just one). 
This is called mini-batch gradient descent



Linear Regression: other methods
• Because Linear Regression is a very simple form of Machine Learning (we model data with a simple function), 

there are methods more direct to minimize the Mean Squared Distance (eg. Normal Equations)


• However, for many equations and many variables, Stochastic Gradient Descent can still be the most efficient 
solution


• There are many existing implementations of Linear Regression, so in practice you would not need to do the 
gradient descent by yourself anyway


• For example, in python, we can use the function linregress in the package stats of the library spicy:



Next

• What if I have more than one variable I want to use?


• eg. Using Daily number of cigarets, weight, BMI index and sport activity to predict age of 
death


• What if I want to learn a function more complex than a linear function?


• We will see that next time. But we will see that in practice the process is always the same: 


• Define the model


• Define the loss


• Do a gradient descent on the loss


