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Neural Network Architectures and 
Backpropagation

• What we are going to discuss today:


• An overview of Neural Network Architectures


• The backpropagation algorithm that allows us to compute the gradient 
in neural network and apply Gradient Descent to learn parameters



Previously, in this class

• Let us recap what we have seen so far



Minimizing a function of several variables

• We have seen that, given a function of 
several variables, we could find its minimum 
by gradient descent

f(x, y) = 4(x − 2)2 + 4(y + 1)2 − 0.1xy

Contour Plot

3D plot



We have seen 
• We have seen that we can learn to predict classes with a simple 

parameterized function called a logistic classifier

score(income, age) = θ0 + θ1 × income + θ2 × age

Vmodel = σ(score)

• And that we can learn the proper parameters by applying gradient 
descent on the loss given some examples



INCOME

AGE

VOTE

eg. 12 mV impulse

eg. 3.2 mV impulse

-70mV or 30mV impulse 
-70mV: Left-Wing 
30mV: Right Wing

Previously
• We have seen that human neurons actually behave 

like logistic classifiers



Previously
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• We have seen that we can obtain more powerful classifiers by combining 
the neuron-like logistic classifiers



Neural Network Architectures
• We have seen that we could connect neurons to get more powerful classifiers


• How do we design the connections in practice ? 


•  —> Neural Networks Architecture
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Neural Network Architectures
• We have seen that we could connect neurons to get more powerful classifiers


• How do we design the connections in practice ? 


•  —> Neural Networks Architecture
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Quick biological  
Analogy

• In our brain too, Neurons are 
organized in complex elaborated 
ways


• Remember that an average neuron 
can connect to 10 000 other neurons


• It seems the organization of the 
neuron in a zone of the brain will 
depending on what this zone of the 
brain is processing


• Neural Network Architecture matters!

Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014"

Wellcome Images, Flickr, cc by nc nd 2.0

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014


Overview of Neural Network Architectures

• First, we will distinguish two broad categories of architecture:


• Feed-Forward Architectures


• Recurrent Architectures



Feed Forward Architectures
• In a Feed Forward Architecture, the “flow” of computation always goes 

forward
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Recurrent Architectures

• In a Recurrent Architecture, the output of a neuron can flow back to a 
previous neuron

Age

Income

VoteNeuron Neuron



Overview of Neural Network Architectures

• First, we will distinguish two broad categories of architecture:


• Feed-Forward Architectures


• Used for image processing or general classification


• Recurrent Architectures


• Used for processing sequences (especially text)



Overview of Neural Network Architectures

• First, we will distinguish two broad categories of architecture:


• Feed-Forward Architectures


• Used for image processing or general classification


• Recurrent Architectures


• Used for processing sequences (especially text)

Today and  
next 2 

sessions



Feed Forward Architectures
• In the case of a feed-forward architecture, we often organize neurons in 

layers 
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Feed Forward Architectures
• In the case of a feed-forward architecture, we often organize neurons in 

layers 
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Feed Forward Architectures
• In the case of a feed-forward architecture, we often organize neurons in 

layers 

Age

Income Neuron

Vote

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 2 Layer 3• Rules:


1. A neuron is never connected to a 
neuron in the same layer


2. A neuron output only goes in the input 
of a neuron in the next layer

• We will call this a Feed Forward Multi-Layer 
Architecture



Type of Feed-Forward layers

• We will consider two types of Feed-Forward Layers:


• Fully Connected Layers


• Convolutional Layers



Fully Connected Layers
• We call a layer “Fully Connected” if EACH neuron in the layer is connected to 

ALL neurons in the previous layer
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Quiz
• Which Layers are fully connected?
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Convolutional Layers
• Among the layers that are NOT fully connected, there is a special type 

of layer called Convolutional layer 

• Very used for processing images 


• Neurons are organized in 2-dimensional layers


• Neurons in 2 layers are only connected if they roughly belong to the 
same area of their respective layer


• Eg. The neuron in the top-left corner of layer 2 is only connected to 
the 9 neurons in the top-left corner of layer 1

Image: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning 

Layer 1

Layer 2

https://arxiv.org/abs/1603.07285


Mix of layers
• A typical Neural Network for Image 

classification will include many 
convolutional layers followed by a 
few fully connected layers

Convolutional layer

Convolutional layer

Convolutional layer

Fully connected layer

Fully connected layer

Cat



Neural Network Architectures
• In short:

Feed-Forward and 

Recurrent

Multi-Layered with

Fully Connected Layers

Convolutional LayersArchitecture can be



Neural Network Architectures
• In short:

Feed-Forward and 

Recurrent

Multi-Layered with

Fully Connected Layers

Convolutional LayersArchitecture can be

Today!



Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:
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Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:
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Keeping in mind what this type of graph mean

Age

Income Logistic 
Classifier

Vote

Logistic 
Classifier

Logistic 
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA

OB

Logistic 
Classifier

Logistic 
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC

OE

OD



Age

Income Logistic 
Classifier

Vote

Logistic 
Classifier

Logistic 
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic 

Classifier

Logistic 
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean
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Keeping in mind what this type of graph mean
—>  Each Neural Network architecture defines a function of the input with parameters   θ



Feed-Forward networks with fully connected layers

• Therefore, this is just a visual way of defining a complicated parameterized 
function of Vote given Age and Income:
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—>  Each Neural Network architecture defines a function of the input with parameters   θ



Parameters
• If a neuron has N inputs, it has N+1 parameters

Logistic 
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1
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x3

O



Parameters
• If a neuron has N inputs, it has N+1 parameters


• Visually, we can associate a parameter to each input, and show θ0 separately

Logistic 
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1
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O
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Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron


• θ0 is often called the bias of the neuron

Logistic 
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Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron


• They are therefore often also  noted w1, w2, w3


• θ0 is often called the bias of the neuron


• It is often noted b

Logistic 
Classifier

O(x1, x2, x3) = σ(b + w1 × x1 + w2 × x2 + w3 × x3)

x1

x2

x3

O
w1
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w3

b



Quiz
• How many parameters for this Neural Network?
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Parameters of Fully Connected Layers
• For a fully connected layer of N neurons, and with M neurons in the previous 

layer, the number of parameters is :  N x M + N

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 2

Layer 2 has 5x3+5 = 20 parameters



How to find good parameters

• The result of our Neural Network will depend on the value of the 
parameters


• How do we find good parameters?



How to find the parameters θ?
LOSS

Examples

Model

Output

LOSS

Data on vote and 
income

Neural 
Network

Prediction of 
vote

We have some examples 

We have a model with some parameters

We have a loss function that compute the difference 
between the example and the prediction of our model
We minimize the loss to obtain the best parameters for our model 

by GRADIENT DESCENT



How to find the parameters θ?
LOSS

Examples

Model

Output

LOSS

Data on vote and 
income

Neural 
Network

Prediction of 
vote

We have some examples 

We have a model with some parameters

We have a loss function that compute the difference 
between the example and the prediction of our model
We minimize the loss to obtain the best parameters for our model 

by GRADIENT DESCENT

Yeah ok, we have seen that before… 
But if we have a complicated neural network, won’t it be 
very complicated to compute the gradient for all these 

parameters?



The Backpropagation algorithm

• Actually there is a method for automatically computing the gradient of a 
loss for a given Feed Forward Neural Network


• And as you should know now, if we can compute the gradient of the 
loss, we can find the parameters that minimize the loss by gradient 
descent 



The Backpropagation algorithm
• We will not see the details of the algorithm


• It is actually quite simple, but involves some notions not everybody here is familiar with:


• Partial derivatives


• Dynamic programming


• Anyway, in practice, you will use software that will do the backpropagation for you 


• -> You can actually train a Neural Network without understanding the Backpropagation 
algorithm (but you should know it exists)


• But let us see the general idea



The backpropagation algorithm
• The role of the backpropagation is to compute the gradient


• Remember that the gradient is a vector of partial derivatives


• Now, remember the composition rule (a.k.a chain rule) for derivatives (1 
variable case here, but there is a similar rule for the case with several 
variables):

f(x) = g(h(x)) f′�(x) = h′�(x) × g′�((h(x))
Chain rule

This rule says that if I know how to compute the derivative of functions 
g(x) and h(x), you know how to compute  the derivative of g(h(x))



The backpropagation algorithm
• We know how to compute the gradient for a single neuron


• (see the lecture on logistic classifier for a formula)
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O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O
θ1

θ2

θ3

θ0



The backpropagation algorithm
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• Actually, a neural network is just a composition of functions


• And we know how to compute the gradient for one of these functions



The backpropagation algorithm
• Actually, a neural network is just a composition of functions


• And we know how to compute the gradient for one of these functions


• And we have seen there is a chain rule that says that if we know how to 
compute the derivative of simple functions, we can compute the derivative 
of their composition

f(x) = g(h(x)) f′�(x) = h′�(x) × g′�((h(x))
Chain rule

• This is the fundamental principle of the back propagation algorithm



The backpropagation algorithm
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We know how to compute the gradient for the individual neurons:



The backpropagation algorithm
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Thanks to the chain rule, we therefore can compute the gradient for  this part of the network:
We know how to compute the gradient for the individual neurons



The backpropagation algorithm
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Thanks to the chain rule, we therefore can compute the gradient for  this other part of the network:
We know how to compute the gradient for the individual neurons



The backpropagation algorithm
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We know how to compute the gradient for the individual neurons
Finally, thanks to the chain rule, we can compute the gradient for the whole network:



The backpropagation algorithm

• That is the general idea: if you have the formula for computing the 
gradient for each part of the neural network, you can compute the 
gradient for the whole network



Backpropagation in practice

• Note that backpropagation do not work only with Neural Networks


• It can be used to compute the derivative of any composition of function


• In order to make you “feel” the process of the back propagation algorithm 
(rather than describe it), let us apply it on a simple composition of 
functions



Backpropagation in practice

• Note that backpropagation do not work only with Neural Networks


• It can be used to compute the derivative of any composition of function


• In order to make you “feel” the process of the back propagation algorithm 
(rather than describe it), let us apply it on a simple composition of 
functions



Backpropagation in practice:

• To make you feel how it actually work, let us consider the composition of 
simple functions:

h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1
• We define K(x) = f(g(h(x)))


• We want to compute the value and the derivative of K for x=1 (for example)



Backpropagation in practice:

• To make you feel how it actually work, let us consider the composition of 
simple functions:

h(x) = x + 1 g(x) = 2(x − 1)2 f(x) = x2 − x + 1

• We define K(x) = f(g(h(x)))


• We want to compute the value and the derivative of K for x=1 (for example)


• One way is to compute K explicitly:


• Then K(1) = 4-2+1 = 3


• We can also compute K’(x) explicitly: 


• Then K’(1) = 16 - 4 = 12

K(x) = 4x4 − 2x2 + 1

K′�(x) = 16x3 − 4x



Backpropagation in practice:

• To make you feel how it actually work, let us consider the composition of 
simple functions:

h(x) = x + 1 g(x) = 2(x − 1)2 f(x) = x2 − x + 1

• We define K(x) = f(g(h(x)))


• We want to compute the value and the derivative of K for x=1 (for 
example)


• Now, let us do it using backpropagation!



Backpropagation in practice:

• First, let us make sure we know the derivative of each individual function:
h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1
• Let us try to see K(x) = f(g(h(x))) as if it was a neural network:

h g fx
h(x) g(h(x) f(g(h(x))

K(x)

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

Note: this graph is called the “computation graph” of K



Backpropagation in practice:

• First, let us make sure we know the derivative of each individual function:
h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1
• Let us try to see K(x) = f(g(h(x))) as if it was a neural network:

h g fx
h(x) g(h(x) f(g(h(x))

K(x)

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

• Then let us compute K(1):

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3



Backpropagation in practice:

• First, let us make sure we know the derivative of each individual function:
h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

K(x) = f(g(h(x)))

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)• By applying the chain rule twice, we have:


• Note that we have already computed h(x) and g(h(x))!


• Let us compute K’(1):



Backpropagation in practice:
• First, let us make sure we know the derivative of each individual function:

h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

K(x) = f(g(h(x)))

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)• By applying the chain rule twice, we have:


• Note that we have already computed h(x) and g(h(x))!


• Let us compute K’(1):

f’(g(h(x))) = 3g’(h(x)) = 4h’(x) =  1K’(1) = 3 x 4 x 1 = 12



Backpropagation in practice:
• Note that we did the computation in two passes:


• First pass compute K(1)


• Second pass reuse the computations of the first pass to compute K’(1)


• Backpropagation works always like that:


• The first pass is called the forward pass


• The second pass is called the backward pass

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)

f’(g(h(x))) = 3g’(h(x)) = 4h’(x) =  1K’(1) = 3 x 4 x 1 = 12



The backpropagation algorithm
• Backpropagation works exactly the same way on neural networks:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron Neuron

Neuron

Neuron

Age

Income

Vote

Forward pass: compute vote prediction and loss

Loss

Backward pass: compute gradient of loss



A word about the different approaches for 
computing derivatives

• Note that backpropagation is a specific case of Automatic 
Differentiation 

• There exists 3 methods for computing a derivative with a computer:


• Automatic differentiation


• Symbolic differentiation


• Numerical differentiation



A word about the different approaches for 
computing derivatives

• Note that backpropagation is a specific case of Automatic 
Differentiation 

• There exists 3 methods for computing a derivative with a computer:


• Automatic differentiation


• Symbolic differentiation


• Numerical differentiation



A word about the different approaches for 
computing derivatives

• Going back to our example, let us illustrate how each method compute 
the derivative of K(x) = f(g(h(x))):


• Automatic differentiation use the computation graph (like we saw)


• Symbolic differentiation is the first thing we tried: compute K and K’ 
explicitly:


• Numerical differentiation K(1.0001)-K(1)

K(x) = 4x4 − 2x2 + 1 K′�(x) = 16x3 − 4x K′�(1) = 12

K′�(1) ≈
K(1.0001) − K(1)

0.0001
=

3.0012002 − 3
0.0001

≈ 12



A word about the different approaches for 
computing derivatives

• Note that backpropagation is a specific case of Automatic Differentiation 

• There exists 3 methods for computing a derivative with a computer:


• Automatic differentiation


• Commonly used for neural network


• Symbolic differentiation


• Sometimes used in combination with backpropagation for neural network (but usually less 
efficient)


• Numerical differentiation


• Way too slow! (and approximative)



How about you try?
• We define K(x) = f(g(h(x))) with these functions. Compute K(1) and K’(1) 

with both the symbolic method and the backpropagation method

h(x) = x2 g(x) = 3x f(x) = 1 + x2

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)
K(x) = f(g(h(x)))



Neural Network Libraries

• As mentioned, we normally use libraries that will do all this 
backpropagation work for us



Flow of training with a library:
• Define Model M


• Repeat:


• Take some example (input, desired_output) (eg. ( [age,income], vote))


• prediction: = Model(x)


• loss := loss_function(prediction, desired_output)


• loss.backward()


• optimizer.update(model)

We will see how next time

Forward pass

Ask library to compute 
backward pass

Ask library to perform a 
gradient descent update



Which libraries

• There are many existing libraries for using Neural Network: Tensorflow, 
Torch, PyTorch, Chainer, Keras,….


• Let us describe a few of them



Which libraries

• Tensorflow is the library developed by Google


• It is used internally by Google developpers (eg. Google Translate run on 
tensorflow)


• Open Source


• Use Python or C++ programming language



Which libraries

• Chainer is a library developed the Japanese company Preferred Networks


• Open Source


• Uses Python


• Easy to use



Which libraries
• Torch and PyTorch


• Currently sponsored and used by Facebook


• Open Source


• Torch uses the LUA programming language


• PyTorch uses the Python programming language


• (PyTorch was initially a fork of chainer that got adapted to uses the 
torch libraries)



Which libraries
• Theano


• One of the oldest library


• Developed “Universite de Montreal”


• Open Source


• Can use symbolic differentiation


• A bit difficult to use



Which libraries

• Keras


• Library that run on top of Tensorflow or Theano


• Make them easier to use



For next time

• From next week, we will train real neural networks using chainer or 
PyTorch


• Please try to install both by running:


• conda install pytorch-cpu -c pytorch


• pip install chainer


