
Neural Network Architectures
and Backpropagation

Fundamentals of Artificial Intelligence

Fabien Cromieres

Kyoto University

http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/IA/

Neural Network Architectures and
Backpropagation

• What we are going to discuss today:

• An overview of Neural Network Architectures

• The backpropagation algorithm that allows us to compute the gradient
in neural network and apply Gradient Descent to learn parameters

Previously, in this class

• Let us recap what we have seen so far

Minimizing a function of several variables

• We have seen that, given a function of
several variables, we could find its minimum
by gradient descent

f(x, y) = 4(x − 2)2 + 4(y + 1)2 − 0.1xy

Contour Plot

3D plot

We have seen
• We have seen that we can learn to predict classes with a simple

parameterized function called a logistic classifier

score(income, age) = θ0 + θ1 × income + θ2 × age

Vmodel = σ(score)

• And that we can learn the proper parameters by applying gradient
descent on the loss given some examples

INCOME

AGE

VOTE

eg. 12 mV impulse

eg. 3.2 mV impulse

-70mV or 30mV impulse
-70mV: Left-Wing
30mV: Right Wing

Previously
• We have seen that human neurons actually behave

like logistic classifiers

Previously

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

Logistic
Classifier

Logistic
Classifier

Logistic
Classifier

• We have seen that we can obtain more powerful classifiers by combining
the neuron-like logistic classifiers

Neural Network Architectures
• We have seen that we could connect neurons to get more powerful classifiers

• How do we design the connections in practice ?

• —> Neural Networks Architecture

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

Logistic
Classifier

Logistic
Classifier

Logistic
Classifier

Age

Income Logistic
Classifier

VoteLogistic
Classifier

Logistic
Classifier

Logistic
Classifier

OR ?

Neural Network Architectures
• We have seen that we could connect neurons to get more powerful classifiers

• How do we design the connections in practice ?

• —> Neural Networks Architecture

Age

Income Neuron

Vote

Neuron

Neuron

Neuron

Neuron

Neuron

Age

Income Neuron

VoteNeuron Neuron

Neuron

OR ?

Quick biological
Analogy

• In our brain too, Neurons are
organized in complex elaborated
ways

• Remember that an average neuron
can connect to 10 000 other neurons

• It seems the organization of the
neuron in a zone of the brain will
depending on what this zone of the
brain is processing

• Neural Network Architecture matters!

Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014"

Wellcome Images, Flickr, cc by nc nd 2.0

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014

Overview of Neural Network Architectures

• First, we will distinguish two broad categories of architecture:

• Feed-Forward Architectures

• Recurrent Architectures

Feed Forward Architectures
• In a Feed Forward Architecture, the “flow” of computation always goes

forward

Age

Income Neuron

Vote

Neuron

Neuron

Neuron

Neuron

Neuron

Recurrent Architectures

• In a Recurrent Architecture, the output of a neuron can flow back to a
previous neuron

Age

Income

VoteNeuron Neuron

Overview of Neural Network Architectures

• First, we will distinguish two broad categories of architecture:

• Feed-Forward Architectures

• Used for image processing or general classification

• Recurrent Architectures

• Used for processing sequences (especially text)

Overview of Neural Network Architectures

• First, we will distinguish two broad categories of architecture:

• Feed-Forward Architectures

• Used for image processing or general classification

• Recurrent Architectures

• Used for processing sequences (especially text)

Today and
next 2

sessions

Feed Forward Architectures
• In the case of a feed-forward architecture, we often organize neurons in

layers

Age

Income Neuron

Vote

Neuron

Neuron

Neuron

Neuron

Neuron

Feed Forward Architectures
• In the case of a feed-forward architecture, we often organize neurons in

layers

Age

Income Neuron

Vote

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 2 Layer 3

Feed Forward Architectures
• In the case of a feed-forward architecture, we often organize neurons in

layers

Age

Income Neuron

Vote

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 2 Layer 3• Rules:

1. A neuron is never connected to a
neuron in the same layer

2. A neuron output only goes in the input
of a neuron in the next layer

• We will call this a Feed Forward Multi-Layer
Architecture

Type of Feed-Forward layers

• We will consider two types of Feed-Forward Layers:

• Fully Connected Layers

• Convolutional Layers

Fully Connected Layers
• We call a layer “Fully Connected” if EACH neuron in the layer is connected to

ALL neurons in the previous layer

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 2

Quiz
• Which Layers are fully connected?

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron Neuron

Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5 Layer 6 Layer 7 Layer 8

Convolutional Layers
• Among the layers that are NOT fully connected, there is a special type

of layer called Convolutional layer

• Very used for processing images

• Neurons are organized in 2-dimensional layers

• Neurons in 2 layers are only connected if they roughly belong to the
same area of their respective layer

• Eg. The neuron in the top-left corner of layer 2 is only connected to
the 9 neurons in the top-left corner of layer 1

Image: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Layer 1

Layer 2

https://arxiv.org/abs/1603.07285

Mix of layers
• A typical Neural Network for Image

classification will include many
convolutional layers followed by a
few fully connected layers

Convolutional layer

Convolutional layer

Convolutional layer

Fully connected layer

Fully connected layer

Cat

Neural Network Architectures
• In short:

Feed-Forward and

Recurrent

Multi-Layered with

Fully Connected Layers

Convolutional LayersArchitecture can be

Neural Network Architectures
• In short:

Feed-Forward and

Recurrent

Multi-Layered with

Fully Connected Layers

Convolutional LayersArchitecture can be

Today!

Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Input 1

Input 2

Output

Feed-Forward networks with fully connected layers

• Therefore, we are going to consider this type of Neural Network:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Age

Income

Vote

Keeping in mind what this type of graph mean

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC

OE

OD

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic

Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA = 0.34

OB = 0.78
Logistic

Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC = 0.45

OE = 0.89

OD = 0.68

Age = 32

Income = 120

Keeping in mind what this type of graph mean
—> Each Neural Network architecture defines a function of the input with parameters θ

Feed-Forward networks with fully connected layers

• Therefore, this is just a visual way of defining a complicated parameterized
function of Vote given Age and Income:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Age

Income

Vote

—> Each Neural Network architecture defines a function of the input with parameters θ

Parameters
• If a neuron has N inputs, it has N+1 parameters

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O

Parameters
• If a neuron has N inputs, it has N+1 parameters

• Visually, we can associate a parameter to each input, and show θ0 separately

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O
θ1

θ2

θ3

θ0

Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron

• θ0 is often called the bias of the neuron

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O
θ1

θ2

θ3

θ0

Parameters: Terminology
• θ1, θ2, θ3 are often called the weights of the neuron

• They are therefore often also noted w1, w2, w3

• θ0 is often called the bias of the neuron

• It is often noted b

Logistic
Classifier

O(x1, x2, x3) = σ(b + w1 × x1 + w2 × x2 + w3 × x3)

x1

x2

x3

O
w1

w2

w3

b

Quiz
• How many parameters for this Neural Network?

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 4

Neuron Neuron

Neuron

Neuron

Layer 2 Layer 3 Layer 5

Age

Income

Vote

Parameters of Fully Connected Layers
• For a fully connected layer of N neurons, and with M neurons in the previous

layer, the number of parameters is : N x M + N

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Layer 1 Layer 2

Layer 2 has 5x3+5 = 20 parameters

How to find good parameters

• The result of our Neural Network will depend on the value of the
parameters

• How do we find good parameters?

How to find the parameters θ?
LOSS

Examples

Model

Output

LOSS

Data on vote and
income

Neural
Network

Prediction of
vote

We have some examples

We have a model with some parameters

We have a loss function that compute the difference
between the example and the prediction of our model
We minimize the loss to obtain the best parameters for our model

by GRADIENT DESCENT

How to find the parameters θ?
LOSS

Examples

Model

Output

LOSS

Data on vote and
income

Neural
Network

Prediction of
vote

We have some examples

We have a model with some parameters

We have a loss function that compute the difference
between the example and the prediction of our model
We minimize the loss to obtain the best parameters for our model

by GRADIENT DESCENT

Yeah ok, we have seen that before…
But if we have a complicated neural network, won’t it be
very complicated to compute the gradient for all these

parameters?

The Backpropagation algorithm

• Actually there is a method for automatically computing the gradient of a
loss for a given Feed Forward Neural Network

• And as you should know now, if we can compute the gradient of the
loss, we can find the parameters that minimize the loss by gradient
descent

The Backpropagation algorithm
• We will not see the details of the algorithm

• It is actually quite simple, but involves some notions not everybody here is familiar with:

• Partial derivatives

• Dynamic programming

• Anyway, in practice, you will use software that will do the backpropagation for you

• -> You can actually train a Neural Network without understanding the Backpropagation
algorithm (but you should know it exists)

• But let us see the general idea

The backpropagation algorithm
• The role of the backpropagation is to compute the gradient

• Remember that the gradient is a vector of partial derivatives

• Now, remember the composition rule (a.k.a chain rule) for derivatives (1
variable case here, but there is a similar rule for the case with several
variables):

f(x) = g(h(x)) f′�(x) = h′�(x) × g′�((h(x))
Chain rule

This rule says that if I know how to compute the derivative of functions
g(x) and h(x), you know how to compute the derivative of g(h(x))

The backpropagation algorithm
• We know how to compute the gradient for a single neuron

• (see the lecture on logistic classifier for a formula)

Logistic
Classifier

O(x1, x2, x3) = σ(θ0 + θ1 × x1 + θ2 × x2 + θ3 × x3)

x1

x2

x3

O
θ1

θ2

θ3

θ0

The backpropagation algorithm

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

OA(income, age) = σ(θA
0 + θA

1 × income + θA
2 × age)

OB(income, age) = σ(θB
0 + θB

1 × income + θB
2 × age)

OC(income, age) = σ(θC
0 + θC

1 × OA + θC
2 × OB)

Neuron A

Neuron B

Neuron C
OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E

OD(income, age) = σ(θD
0 + θD

1 × OA + θD
2 × OB)

OE(income, age) = σ(θE
0 + θE

1 × OC + θE
2 × OD)

OC

OE

OD

• Actually, a neural network is just a composition of functions

• And we know how to compute the gradient for one of these functions

The backpropagation algorithm
• Actually, a neural network is just a composition of functions

• And we know how to compute the gradient for one of these functions

• And we have seen there is a chain rule that says that if we know how to
compute the derivative of simple functions, we can compute the derivative
of their composition

f(x) = g(h(x)) f′�(x) = h′�(x) × g′�((h(x))
Chain rule

• This is the fundamental principle of the back propagation algorithm

The backpropagation algorithm

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

Neuron A

Neuron B

Neuron C

OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E
OC

OE

OD

We know how to compute the gradient for the individual neurons:

The backpropagation algorithm

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

Neuron A

Neuron B

Neuron C

OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E
OC

OE

OD

Thanks to the chain rule, we therefore can compute the gradient for this part of the network:
We know how to compute the gradient for the individual neurons

The backpropagation algorithm

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

Neuron A

Neuron B

Neuron C

OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E
OC

OE

OD

Thanks to the chain rule, we therefore can compute the gradient for this other part of the network:
We know how to compute the gradient for the individual neurons

The backpropagation algorithm

Age

Income Logistic
Classifier

Vote

Logistic
Classifier

Logistic
Classifier

Neuron A

Neuron B

Neuron C

OA

OB

Logistic
Classifier

Logistic
Classifier

Neuron D

Neuron E
OC

OE

OD

We know how to compute the gradient for the individual neurons
Finally, thanks to the chain rule, we can compute the gradient for the whole network:

The backpropagation algorithm

• That is the general idea: if you have the formula for computing the
gradient for each part of the neural network, you can compute the
gradient for the whole network

Backpropagation in practice

• Note that backpropagation do not work only with Neural Networks

• It can be used to compute the derivative of any composition of function

• In order to make you “feel” the process of the back propagation algorithm
(rather than describe it), let us apply it on a simple composition of
functions

Backpropagation in practice

• Note that backpropagation do not work only with Neural Networks

• It can be used to compute the derivative of any composition of function

• In order to make you “feel” the process of the back propagation algorithm
(rather than describe it), let us apply it on a simple composition of
functions

Backpropagation in practice:

• To make you feel how it actually work, let us consider the composition of
simple functions:

h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1
• We define K(x) = f(g(h(x)))

• We want to compute the value and the derivative of K for x=1 (for example)

Backpropagation in practice:

• To make you feel how it actually work, let us consider the composition of
simple functions:

h(x) = x + 1 g(x) = 2(x − 1)2 f(x) = x2 − x + 1

• We define K(x) = f(g(h(x)))

• We want to compute the value and the derivative of K for x=1 (for example)

• One way is to compute K explicitly:

• Then K(1) = 4-2+1 = 3

• We can also compute K’(x) explicitly:

• Then K’(1) = 16 - 4 = 12

K(x) = 4x4 − 2x2 + 1

K′�(x) = 16x3 − 4x

Backpropagation in practice:

• To make you feel how it actually work, let us consider the composition of
simple functions:

h(x) = x + 1 g(x) = 2(x − 1)2 f(x) = x2 − x + 1

• We define K(x) = f(g(h(x)))

• We want to compute the value and the derivative of K for x=1 (for
example)

• Now, let us do it using backpropagation!

Backpropagation in practice:

• First, let us make sure we know the derivative of each individual function:
h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1
• Let us try to see K(x) = f(g(h(x))) as if it was a neural network:

h g fx
h(x) g(h(x) f(g(h(x))

K(x)

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

Note: this graph is called the “computation graph” of K

Backpropagation in practice:

• First, let us make sure we know the derivative of each individual function:
h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1
• Let us try to see K(x) = f(g(h(x))) as if it was a neural network:

h g fx
h(x) g(h(x) f(g(h(x))

K(x)

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

• Then let us compute K(1):

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

Backpropagation in practice:

• First, let us make sure we know the derivative of each individual function:
h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

K(x) = f(g(h(x)))

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)• By applying the chain rule twice, we have:

• Note that we have already computed h(x) and g(h(x))!

• Let us compute K’(1):

Backpropagation in practice:
• First, let us make sure we know the derivative of each individual function:

h(x) = x + 1
g(x) = 2(x − 1)2

f(x) = x2 − x + 1

h′�(x) = 1
g′�(x) = 4(x − 1)
f′�(x) = 2x − 1

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

K(x) = f(g(h(x)))

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)• By applying the chain rule twice, we have:

• Note that we have already computed h(x) and g(h(x))!

• Let us compute K’(1):

f’(g(h(x))) = 3g’(h(x)) = 4h’(x) = 1K’(1) = 3 x 4 x 1 = 12

Backpropagation in practice:
• Note that we did the computation in two passes:

• First pass compute K(1)

• Second pass reuse the computations of the first pass to compute K’(1)

• Backpropagation works always like that:

• The first pass is called the forward pass

• The second pass is called the backward pass

h g fx=1
h(x)=2 g(h(x)) = 2 f(g(h(x))=3

K(x) = 3

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)

f’(g(h(x))) = 3g’(h(x)) = 4h’(x) = 1K’(1) = 3 x 4 x 1 = 12

The backpropagation algorithm
• Backpropagation works exactly the same way on neural networks:

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron

Neuron Neuron

Neuron

Neuron

Age

Income

Vote

Forward pass: compute vote prediction and loss

Loss

Backward pass: compute gradient of loss

A word about the different approaches for
computing derivatives

• Note that backpropagation is a specific case of Automatic
Differentiation

• There exists 3 methods for computing a derivative with a computer:

• Automatic differentiation

• Symbolic differentiation

• Numerical differentiation

A word about the different approaches for
computing derivatives

• Note that backpropagation is a specific case of Automatic
Differentiation

• There exists 3 methods for computing a derivative with a computer:

• Automatic differentiation

• Symbolic differentiation

• Numerical differentiation

A word about the different approaches for
computing derivatives

• Going back to our example, let us illustrate how each method compute
the derivative of K(x) = f(g(h(x))):

• Automatic differentiation use the computation graph (like we saw)

• Symbolic differentiation is the first thing we tried: compute K and K’
explicitly:

• Numerical differentiation K(1.0001)-K(1)

K(x) = 4x4 − 2x2 + 1 K′�(x) = 16x3 − 4x K′�(1) = 12

K′�(1) ≈
K(1.0001) − K(1)

0.0001
=

3.0012002 − 3
0.0001

≈ 12

A word about the different approaches for
computing derivatives

• Note that backpropagation is a specific case of Automatic Differentiation

• There exists 3 methods for computing a derivative with a computer:

• Automatic differentiation

• Commonly used for neural network

• Symbolic differentiation

• Sometimes used in combination with backpropagation for neural network (but usually less
efficient)

• Numerical differentiation

• Way too slow! (and approximative)

How about you try?
• We define K(x) = f(g(h(x))) with these functions. Compute K(1) and K’(1)

with both the symbolic method and the backpropagation method

h(x) = x2 g(x) = 3x f(x) = 1 + x2

K′�(x) = f′�(g(h(x))) × g′�(h(x)) × h′�(x)
K(x) = f(g(h(x)))

Neural Network Libraries

• As mentioned, we normally use libraries that will do all this
backpropagation work for us

Flow of training with a library:
• Define Model M

• Repeat:

• Take some example (input, desired_output) (eg. ([age,income], vote))

• prediction: = Model(x)

• loss := loss_function(prediction, desired_output)

• loss.backward()

• optimizer.update(model)

We will see how next time

Forward pass

Ask library to compute
backward pass

Ask library to perform a
gradient descent update

Which libraries

• There are many existing libraries for using Neural Network: Tensorflow,
Torch, PyTorch, Chainer, Keras,….

• Let us describe a few of them

Which libraries

• Tensorflow is the library developed by Google

• It is used internally by Google developpers (eg. Google Translate run on
tensorflow)

• Open Source

• Use Python or C++ programming language

Which libraries

• Chainer is a library developed the Japanese company Preferred Networks

• Open Source

• Uses Python

• Easy to use

Which libraries
• Torch and PyTorch

• Currently sponsored and used by Facebook

• Open Source

• Torch uses the LUA programming language

• PyTorch uses the Python programming language

• (PyTorch was initially a fork of chainer that got adapted to uses the
torch libraries)

Which libraries
• Theano

• One of the oldest library

• Developed “Universite de Montreal”

• Open Source

• Can use symbolic differentiation

• A bit difficult to use

Which libraries

• Keras

• Library that run on top of Tensorflow or Theano

• Make them easier to use

For next time

• From next week, we will train real neural networks using chainer or
PyTorch

• Please try to install both by running:

• conda install pytorch-cpu -c pytorch

• pip install chainer

