Neural Network Architectures
and Backpropagation

Fundamentals of Artificial Intelligence
Fabien Cromieres
Kyoto University
http://lotus.kuee.kyoto-u.ac.jp/~fabien/lectures/|IA/

Neural Network Architectures and
Backpropagation

 \WWhat we are going to discuss today:
e An overview of Neural Network Architectures

 The backpropagation algorithm that allows us to compute the gradient
in neural network and apply Gradient Descent to learn parameters

Previously, In this class

 Let us recap what we have seen so far

Minimizing a function of several variables

fx,y) =4(x —2)*+4(y + 1)> = 0.1xy

3D plot A\

[200

[150
I 100

 \We have seen that, given a function of
several variables, we could find its minimum

by gradient descent

Contour Plot

| | I | |
w 4 w N — [ot N w I
l A A A A A A A A

We have seen

 We have seen that we can learn to predict classes with a simple
parameterized function called a logistic classifier

0.96

score(income, age) = 0, + 0; X income + 0, X age

v

mode

0.84
= o(score) o

- 0.48

- 0.36

0.24

0.12

0.00

80 100 120

 And that we can learn the proper parameters by applying gradient
descent on the loss given some examples

Previously

-70mV or 30mV impulse

 We have seen that human neurons actually behave -70mV: Left-Wing
like logistic classifiers 30mV: Right Wing
VOTE
Dendrite
INCOME xon €rminal
1 Node of
eg. 12 mV impulse 7 N Cell body Ranvier

AXON Schwann cell

Myelin sheath
AGE Nucleus

ed. 3.2 mV impulse

Previously

* \We have seen that we can obtain more powerful classifiers by combining
the neuron-like logistic classifiers

Logistic
Classifier

Logistic
Classifier

Logistic Logistic
Classifier Classifier

0.96

0.84

072

- 0.60

- 0.48

Income | Logistic
Classifier

- 0.36

\ Logistic

Classifier

0.24

0.12

0.00
20 40 60 80 100 120 140 160

Neural Network Architectures

* We have seen that we could connect neurons to get more powerful classifiers
* How do we design the connections in practice ?

e —> Neural Networks Architecture

Logistic
/ Classifier
Logistic
e —
Classifier

OR?

Logistic

Age

Classifier

Logistic T

Classifier Vote __
Logistic
m_’ Classifier

Logistic
Classifier

Logistic

Income o
Classifier

Logistic
Classifier

Logistic
> > Vote

T

¥ Logistic
Classifier

Neural Network Architectures

 \We have seen that we could connect neurons to get more powerful classifiers

« How do we design the connections in practice ?

e —> Neural Networks Architecture

OR?

> Vote

Quick biological
Analogy

In our brain too, Neurons are
organized in complex elaborated
ways

Remember that an average neuron
can connect to 10 000 other neurons

It seems the organization of the
neuron in a zone of the brain will
depending on what this zone of the
brain is processing

Neural Network Architecture matters!

Wellcome Images, Flickr, cc by nc nd 2.0

Primary sensory cortex Primary motor cortex
(postcentral gyrus) (precentral gyrus)

o & Somatic motor
association area

/ (premotor cortex)

Somatic sensory

association area i
>\ —

Visual . £ . 2 Prefrontal
association 0 e . ‘(/ cortex
o \ 3 R

i 22 N g P &

_Broca’s area
(production of
speech)

Visual cortex 77" Auditory association area

Wernicke’s area

Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014" (understand speech) Auditory cortex

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014

Overview of Neural Network Architectures

* First, we will distinguish two broad categories of architecture:

e Feed-Forward Architectures

e Recurrent Architectures

Feed Forward Architectures

* In a Feed Forward Architecture, the “flow” of computation always goes

forward

Recurrent Architectures

* In a Recurrent Architecture, the output of a neuron can flow back to a
previous neuron

T

Q) © -

Overview of Neural Network Architectures

* First, we will distinguish two broad categories of architecture:

 Feed-Forward Architectures
e Used for image processing or general classification
 Recurrent Architectures

 Used for processing sequences (especially text)

Overview of Neural Network Architectures

* First, we will distinguish two broad categories of architecture:

Today and
next 2
sessions

e Feed-Forward Architectures

e Used for image processing or general classification

e Recurrent Architectures

 Used for processing sequences (especially text)

Feed Forward Architectures

* In the case of a feed-forward architecture, we often organize neurons in

layers

Feed Forward Architectures

* In the case of a feed-forward architecture, we often organize neurons in
layers

Layer 1 Layer 2 Layer 3

“

LJ

Feed Forward Architectures

* In the case of a feed-forward architecture, we often organize neurons in

layers
* Rules: Layer 1 Layer 2 Layer 3
1. A neuron IS never connected to a
neuron in the same layer A

\

2. A neuron output only goes in the input
of a neuron in the next layer

yd
®\

Income

 We will call this a Feed Forward Multi-Layer
Architecture

Type of Feed-Forward layers

 \We will consider two types of Feed-Forward Layers:
* Fully Connected Layers

e Convolutional Layers

Fully Connected Layers

 We call a layer “Fully Connected” if EACH neuron in the layer is connected to
ALL neurons in the previous layer

Layer 1 Layer 2

Quiz

 Which Layers are fully connected?

Layer1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

-

Neuron

' ©-©-

Convolutional Layers

 Among the layers that are NOT fully connected, there is a special type
of layer called Convolutional layer

e Very used for processing images

Layer 1
 Neurons are organized in 2-dimensional layers

 Neurons in 2 layers are only connected if they roughly belong to the
same area of their respective layer

Layer 2

 Eg. The neuron in the top-left corner of layer 2 is only connected to
the 9 neurons in the top-left corner of layer

Image: Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285

Mix of layers

, Fully connected layer
* A typical Neural Network for Image

e
classification will include many t
convolutional layers followed by a _
?

Fully connected layer
few fully connected layers

Convolutional layer

Convolutional layer

Convolutional layer

Neural Network Architectures

e |n short:

Fully Connected Layers

Feed-Forward and — Multi-Layered with

/

Architecture can be Convolutional Layers

N

Recurrent

Neural Network Architectures

e |n short:

Today!

Fully Connected Layers
Feed-Forward and — Multi-Layered with
Architecture can be Convolutional Layers

N

Recurrent

Feed-Forward networks with fully connected layers

* Therefore, we are going to consider this type of Neural Network:

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

N
Input 1 %@ 4
\VayY .

Input2 = LSl

euron

euron

Feed-Forward networks with fully connected layers

* Therefore, we are going to consider this type of Neural Network:

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

\
v @D,
\VaY .

Income = Gl

euron

euron

@—)@9 Vote

Keeping in mind what this type of graph mean

O,(income, age) = 0(6’6‘ + 9‘14 X income + (9‘24 X age) O (income, age) = 0(6’OC + 6’1C X Oy + 62C X Op)

0 Neuron C
o A O
Age . Logls:t_lc ’ Logistic C Neuron E
Classifier Classifier \
Neuron A OE

Logistic R

Op(income, age) = 0(6’5 + 6’{5 X O+ 6’5 X Op)

Neuron D
Neuron B

ncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «913 X income + 6’5 X age)

Logistic
0 Classifier
B

Op(income, age) = 0(6’5) + 6’? X Oy + 6’5 X Op)

Keeping in mind what this type of graph mean

O,(income, age) = 0(6’6‘ + «9‘14 X income + (9‘24 X age) O (income, age) = 0(6’OC + 6’1C X Oy + 62C X Op)

Age = 32 Neuron C

04 = 0.34 0,. = 0.45
Logistic § Logistic c— Neuron E
Classifier Classifier \
Neuron A Logistic OE ~ O'8>9 Vote
Classifier

Logistic Og(income, age) = 5((95j + 6’{5 X O+ 6’5 X Op)
Classifier OD = (.68

>

Neuron D

Income = 120 Neuron B

lncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «913 X income + 6’5 X age)

Op(income, age) = a(é’é) + 6’? X Oy + 6’5 X Op)

Keeping in mind what this type of graph mean

—> Each Neural Network architecture defines a function of the input with parameters ©

O,(income, age) = 0(6’6‘ + «9‘14 X income + (9‘24 X age) O (income, age) = 0(6’OC + 6’1C X Oy + 62C X Op)

Neuron C
Age = 32
ge .0, = 0.34 0. — 045
Age . Logls:t_lc W Logistic C ' Neuron E
Classifier Classifier
Neuron A OE = 0.89

> Vote

Logistic
Classifier

Logistic Og(income, age) = 5((95j + 6’{5 X O+ 6’5 X Op)
Classifier OD = (.68

Neuron D

Income = 120 Neuron B

lncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «913 X income + 6’5 X age)

Op(income, age) = a(é’é) + 6’? X Oy + 6’5 X Op)

Feed-Forward networks with fully connected layers

—> Each Neural Network architecture defines a function of the input with parameters ©

* Therefore, this is just a visual way of defining a complicated parameterized

function of Vote given Age and Income:
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Neuron

Age — ‘ / Neuron
- Ol X2
VA

NS
}:\“, Neuron

=N @
@

@—)@9 Vote

Income 9 Neuron Neuron

Parameters

e If a neuron has N inputs, it has N+1 parameters

X Logistic O
2 Classifier

O(xy, X5, X%3) = 0(0y + 0; X x; + 0, X x5 + 05 X Xx3)

Parameters

e If a neuron has N inputs, it has N+1 parameters

e Visually, we can associate a parameter to each input, and show 0o separately

Logistic
Classifier

Parameters: Terminology

* 04, 02, 63 are often called the weights of the neuron

e Opis often called the bias of the neuron

Logistic
Classifier

Parameters: Terminology

* B4, B2, B3 are often called the weights of the neuron
* They are therefore often also noted w1, wa, ws
* Opis often called the bias of the neuron

e |tis often noted b

Logistic

Classifier

Ox{, X5, X3) = 6(b+w; XX; + Wy X Xy + W3 X X3)

» How many parameters for this Neural Network?

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Age —)@ l

\/
7\

Neuron

Neuron

@—)@9 Vote

Income 9 Neuron ’ Neuron

Parameters of Fully Connected Layers

* For a fully connected layer of N neurons, and with M neurons in the previous
layer, the number of parametersis: NxM + N

Layer 1 Layer 2

Neuron é

Neuron

Layer 2 has 5x3+5 = 20 parameters

How to find good parameters

 The result of our Neural Network will depend on the value of the
parameters

 How do we find good parameters?

How to find the parameters 6?

\ LOSS
g’ g =

We have some examples

LOSS

Neural
Network

We have a model with some parameters

We have a loss function that compute the difference
between the example and the prediction of our model

We minimize the loss to obtain the best parameters for our model
by GRADIENT DESCENT

How to find the parameters 6?

Yeah ok, we have seen that before...
But if we have a complicated neural network, won’t it be

very complicated to compute the gradient for all these / \

parameters?
Prediction of
vote

Exar.

Data on vote and
Income

have some examples

Neural

| model with some parameters Network

We have a loss function that compute the difference
between the example and the prediction of our model

We minimize the loss to obtain the best parameters for our model
by GRADIENT DESCENT

The Backpropagation algorithm

e Actually there is a method for automatically computing the gradient of a
loss for a given Feed Forward Neural Network

 And as you should know now, if we can compute the gradient of the
loss, we can find the parameters that minimize the loss by gradient
descent

The Backpropagation algorithm

* We will not see the details of the algorithm

* |t is actually quite simple, but involves some notions not everybody here is familiar with:
* Partial derivatives

 Dynamic programming

* Anyway, In practice, you will use software that will do the backpropagation for you

* -> You can actually train a Neural Network without understanding the Backpropagation
algorithm (but you should know it exists)

 But let us see the general idea

The backpropagation algorithm

* The role of the backpropagation is to compute the gradient
« Remember that the gradient is a vector of partial derivatives

* Now, remember the composition rule (a.k.a chain rule) for derivatives (1
variable case here, but there is a similar rule for the case with several
variables):

Chain rule

£(x) = g(h(x)) m—f f(x) = h'(x) X g'(h(x))

This rule says that if | know how to compute the derivative of functions
d(x) and h(x), you know how to compute the derivative of g(h(x))

The backpropagation algorithm

* \We know how to compute the gradient for a single neuron

* (see the lecture on logistic classifier for a formula)

Logistic

Classifier

x3 O(XI"XZ’ X3) — 0(90 + 91 X X1 + 02 X X9 + 93 X .X3)

The backpropagation algorithm

* Actually, a neural network is just a composition of functions

 And we know how to compute the gradient for one of these functions

O,(income, age) = 0(6’(‘)4 + 6’{‘ X income + 9‘24 X age)

° _ C C C
0O Neuron C Oc(income,age) = o(6y + 0; X Oy + 0, X Op)
L A . N0,
Age g Logistic y Logistic C Neuron E
Classifier Classifier \
Neuron A OE

Logistic R

Op(income, age) = 0(6’5 + 6’1E X O+ 6’5 X Op)

Neuron D
Neuron B

ncome | Logistic
Classifier

Og(income, age) = 0((9(1)9 + «9{9 X income + 6’5 X age)

Logistic
0 Classifier
B

Op(income, age) = 0(«9(? + 6’? X Oy + 6’5 X Op)

The backpropagation algorithm

e Actually, a neural network is just a composition of functions

 And we know how to compute the gradient for one of these functions

 And we have seen there is a chain rule that says that if we know how to

compute the derivative of simple functions, we can compute the derivative
of their composition

Chain rule

(x) = g(h(x)) w—)p f(x) = h'(x) X g'(h(x))

* This is the fundamental principle of the back propagation algorithm

The backpropagation algorithm

We know how to compute the gradient for the individual neurons:

O
Logistic Logistic Neuron E
Classifier Classifier
Neuron A Logistic £ » Vote
Classifier

Neuron D

Neuron B

Logistic Logistic
Income Classifier Classifier

The backpropagation algorithm

We know how to compute the gradient for the individual neurons

Thanks to the chain rule, we therefore can compute the gradient for this part of the network:

Logistic Logistic

__ Neuron E
Classifier Classifier

Op

Neuron A Logistic

Classifier

> Vote

Neuron D

Neuron B

Logistic Logistic
Classifier Classifier

Income

The backpropagation algorithm

We know how to compute the gradient for the individual neurons

Thanks to the chain rule, we therefore can compute the gradient for this other part of the network:

Logistic Logistic

U Neuron E
Classifier Classifier

Op

Logistic
Classifier

> Vote

Logistic Logistic
Classifier Classifier

The backpropagation algorithm

We know how to compute the gradient for the individual neurons

Finally, thanks to the chain rule, we can compute the gradient for the whole network:

Logistic Logistic

U Neuron E
Classifier Classifier

Logistic E
Classifier

> Vote

Logistic Logistic
Income Classifier Classifier

The backpropagation algorithm

 That is the general idea: if you have the formula for computing the
gradient for each part of the neural network, you can compute the
gradient for the whole network

Backpropagation in practice

 Note that backpropagation do not work only with Neural Networks
e |t can be used to compute the derivative of any composition of function

* In order to make you “feel” the process of the back propagation algorithm
(rather than describe it), let us apply it on a simple composition of
functions

Backpropagation in practice

 Note that backpropagation do not work only with Neural Networks
e |t can be used to compute the derivative of any composition of function

* In order to make you “feel” the process of the back propagation algorithm
(rather than describe it), let us apply it on a simple composition of
functions

Backpropagation in practice:

 To make you feel how it actually work, let us consider the composition of
simple functions:

h(x) =x+ 1
g(x) =2(x— 1)°
flx) =x" —x + 1
 We define K(x) = f(g(h(x)))

 \WWe want to compute the value and the derivative of K for x=1 (for example)

Backpropagation in practice:

 To make you feel how it actually work, let us consider the composition of
simple functions:

h(x) =x+1 g(x) = 2(x — 1)° f)=x"—x+1

* We define K(x) = f(g(h(x)))
* We want to compute the value and the derivative of K for x=1 (for example)
» One way is to compute K explicitly: K(x) =4x* = 2x + 1
* Then K(1) =4-2+1=3
* We can also compute K’(x) explicitly: K'(x) = 16x° — 4x

+ Then K'(1) =16 -4 = 12

Backpropagation in practice:

 To make you feel how it actually work, let us consider the composition of
simple functions:

h(x) =x+1 g(x) = 2(x — 1)° f)=x"—x+1

» We define K(x) = f(g(h(x)))

 \We want to compute the value and the derivative of K for x=1 (for
example)

 Now, let us do it using backpropagation!

Backpropagation in practice:

e First, let us make sure we know the derivative of each individual function:

h) = x4 1 o) = 1
() = 2z~ 17) = 4= 1)
fx)=x>—x+1 Jx) =2x-1

e Let us try to see K(x) = f(g(h(x))) as if it was a neural network:

f(g(h
) . h(x) - g(hx , o)

Note: this graph is called the “computation graph” of K

Backpropagation in practice:

e First, let us make sure we know the derivative of each individual function:

h) = x 4 1 o) = 1
() = 2z~ 17) = 4= 1)
fx)=x*—x+1 Jx) ="2x—1

* Let us try to see K(x) = f(g(h(x))) as if it was a neural network:

f(g(h
» h(x) n g(h(x ’ oot

 Then let us compute K(1

- 'h(x) =2 ng(h(x» 2 .f(g(h(x» =3 ro0s

Backpropagation in practice:

e First, let us make sure we know the derivative of each individual function:

h(x) = x + 1 K(x) = flg(h(x))) h(x) =1
g(x) =2(x — 1) g'x) =4(x—1)
f(x)=x2—x_|_1 f(x)=2x—1

x=1 >' h(x)=2 >n g(h(x)) =2 » f(g(h(x))=3 . K(x) =3

* By applying the chain rule twice, we have: K'(x) = f'(g(h(x))) X g'(h(x)) X h'(x)
* Note that we have already computed h(x) and g(h(x))!

* Let us compute K’(1):

Backpropagation in practice:

e First, let us make sure we know the derivative of each individual function:

h(x) = x + 1 K(x) = f(g(h(x))) (x) = 1
g0 = 2(x = 1y gla) ==)
fx)=x*—x+1 Jx)=2x—1

* By applying the chain rule twice, we have: K'(x) = f(g(h(x))) X g'(h(x)) X h'(x)
* Note that we have already computed h(x) and g(h(x))!

e Let us compute K’(1):

x=1 >. h(X)=2 >. g(h(X)) =2 > f(g(h(X))=3 > K(x) _ 1

K'(1)=3x4x1=12 h’(x) = 1 g’(h(x)) =4 f’(g(h(x))) =3

Backpropagation in practice:

 Note that we did the computation in two passes:

e First pass compute K(1)

e Second pass reuse the computations of the first pass to compute K’(1)
 Backpropagation works always like that:

 The first pass is called the forward pass

 The second pass is called the backward pass

K'(x) = f(g(h(x))) X g'(h(x)) X h'(x)

x=1 > h(X)=2 >. g(h(X)) =2 > f(g(h(X))=3 > K(x) _ 3

K'(1)=3x4x1=12 h’(x) = 1 g’(h(x)) =4 f’(g(h(x))) =3

The backpropagation algorithm

 Backpropagation works exactly the same way on neural networks:

Forward pass: compute vote prediction and loss

Neuron

Neuron

/AHA \\‘ Neuron
\\

Income

@9@9 Vote = Loss

Backward pass: compute gradient of loss

A word about the different approaches for
computing derivatives

 Note that backpropagation is a specific case of Automatic
Differentiation

 There exists 3 methods for computing a derivative with a computer:
 Automatic differentiation
 Symbolic differentiation

* Numerical differentiation

A word about the different approaches for
computing derivatives

 Note that backpropagation is a specific case of Automatic
Differentiation

 There exists 3 methods for computing a derivative with a computer:
 Automatic differentiation
 Symbolic differentiation

* Numerical differentiation

A word about the different approaches for
computing derivatives

* Going back to our example, let us illustrate how each method compute
the derivative of K(x) = f(g(h(x))):

 Automatic differentiation use the computation graph (like we saw)

e Symbolic differentiation is the first thing we tried: compute K and K’

SPICHlY: gy =drt—22241 K@ =16-4x —— K(1)=12

 Numerical differentiation K(1.0001)-K(1)

K(1.0001) — K(1) ~ 3.0012002 -3

K'() ~ ~ 12
0.0001 0.0001

A word about the different approaches for
computing derivatives

* Note that backpropagation is a specific case of Automatic Differentiation
* There exists 3 methods for computing a derivative with a computer:
* Automatic differentiation
« Commonly used for neural network
 Symbolic differentiation

e Sometimes used in combination with backpropagation for neural network (but usually less
efficient)

* Numerical differentiation

 Way too slow! (and approximative)

How about you try?

e We define K(x) = f(g(h(x))) with these functions. Compute K(1) and K’(1)
with both the symbolic method and the backpropagation method

h(x) = x? g(x) = 3x fx) =1+ x?

K(x) = f(g(h(x)))
K'(x) = f(g(h(x))) X g'(h(x)) X h'(x)

Neural Network Libraries

 As mentioned, we normally use libraries that will do all this
backpropagation work for us

Flow of training with a library:

e Define Model M

We will see how next time

* Repeat:
 Take some example (input, desired_output) (eg. ([age,income], vote))
e prediction: = Model(x) Forward pass
* |oss :=loss_function(prediction, desired_output)

* |oss.backward()

Ask library to compute
backward pass

- AsKk library to perform a
* optimizer.update(model) gradient descent update

Which libraries

* There are many existing libraries for using Neural Network: Tensorflow,
Torch, PyTorch, Chainer, Keras,....

e | et us describe a few of them

Which libraries

 Tensorflow is the library developed by Google

e |tis used internally by Google developpers (eg. Google Translate run on
tensorflow)

 Open Source

 Use Python or C++ programming language

Which libraries

 Chainer is a library developed the Japanese company Preferred Networks
 Open Source
e Uses Python

 Easy to use

Which libraries

Torch and PyTorch

Currently sponsored and used by Facebook
Open Source

Torch uses the LUA programming language
PyTorch uses the Python programming language

(PyTorch was initially a fork of chainer that got adapted to uses the
torch libraries)

Which libraries

Theano

* One of the oldest library
 Developed “Universite de Montreal”
 Open Source

 Can use symbolic differentiation

e A bit difficult to use

Which libraries

 Keras
* Library that run on top of Tensorflow or Theano

e Make them easier to use

For next time

 From next week, we will train real neural networks using chainer or
PyTorch

* Please try to install both by running:
e conda install pytorch-cpu -c pytorch

e pip install chainer

