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Summary of Last Session 1/3
• Last session, we considered a simple case of Linear Regression:


• For 30 people, we know how old they died, and how many cigarets they were smoking per day


• Using this data, we wanted to predict the life expectancy of somebody given how many cigarets they were smoking

daily 
cigarets

age of 
death

32.0 73.471399

7.0 88.237207

30.0 82.077261

17.0 85.576741

27.0 76.190373

15.0 84.899030

20.0 72.598501

28.0 77.018773

…. …..

What age am I most likely  to die if I 
smoke 10 cigarets per days?

Age

Cigarets



Summary of Last Session 2/3
• We suppose there was some proportionality between the number of cigarets smoked and the 

reduction in life expectancy


• We suppose a linear relation between age of death and number of cigarets smoked

age = θ0 + θ1 × cig

• Now, we can make our prediction:


• What age am I most likely to die if I smoke 10 
cigarets per day?


• 90-0.7x10  = 83 year old

θ0 ≈ 90 θ1 ≈ − 0.7
Age

Cigarets



Summary of Last Session 3/3
• We saw that we could find the parameters of this linear relation by minimizing the 

Mean Squared Distance between the prediction of the model and the actual values


• We saw we could use Gradient Descent to do this minimization 
Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets

MeanSquaredDistance = 294.7 MeanSquaredDistance = 18.3



Today

• We expand on this by considering:


• More than one input feature


• More complex functions


• We will have a look at the important concept of overfitting



Adding more information
• The number of cigarets smoked is not the only important factor for predicting the age of death


• Physical shape


• Biological Sex


• Wealth


• ….
daily 

cigarets
age of 
death

32.0 73.471399

7.0 88.237207

30.0 82.077261

17.0 85.576741

27.0 76.190373

15.0 84.899030

20.0 72.598501

28.0 77.018773

…. …..

What age am I most likely  to die if I 
smoke 10 cigarets per days?

Age

Cigarets



Adding more information
• Let us suppose now that, for the same 30 persons, we also have their BMI index and know their sex


• Vocabulary Note: In Machine Learning, we often cause a “feature” or “feature function” each of this 
piece of information about an example

daily cigarets bmi is male age of death
0 5.0 18.5 1.0 79.8
1 9.0 45.1 0.0 56.8
2 38.0 14.2 0.0 61.4
3 12.0 48.5 1.0 37.5
4 34.0 19.2 0.0 68.4
5 5.0 38.6 0.0 69.3
6 31.0 33.8 1.0 54.8
7 25.0 33.6 1.0 63.0
8 24.0 45.2 1.0 39.3
9 … …. …. ….

bmi =
weight
height2

Is male: 1 if the person is a 
male, 0 if female

Note: most of the time, this is how we represent 
“categorical data” in Machine Learning: a feature 

equal to 1 if the example belongs to the category in 
question, and equal to zero otherwise



Visual representation of the examples

Age

Cigarets

daily cigarets bmi is male age of death
0 5.0 18.5 1.0 79.8
1 9.0 45.1 0.0 56.8
2 38.0 14.2 0.0 61.4
3 12.0 48.5 1.0 37.5
7 25.0 33.6 1.0 63.0
8 24.0 45.2 1.0 39.3
9… …. …. ….

Age

Cigarets
BMI

daily cigarets age of death
0 5.0 79.8
1 9.0 56.8
2 38.0 61.4
3 12.0 37.5
7 25.0 63.0
8 24.0 39.3
9… ….

Male 
Female



Linear Regression with more than one feature

• We can still suppose that the age of death is a linear function of the 
features

age = θ0 + θ1 × cig age = θ0 + θ1 × cig + θ2 × bmi + θ3 × ismale

• We now have 2 more parameters (because we have 2 more features)


• For a total of 4 parameters


• But finding the parameters will be done in exactly the same way as in the 
case with one feature



The General Supervised Machine Learning setting:

LOSS

Examples

Model

Output

Mean Square 
Distance

Data on cigarets 
smoked and age of 

death

Linear 
model

Prediction of 
age of death

We have some examples (cigarets/age data)

We have a model with some parameters 
(linear function with parameters Θ0,Θ1)

We have a loss function that compute the difference 
between the example and the prediction of our 

model (Mean Squared Distance)
We minimize the loss to obtain the 

best parameters for our model

+ bmi and biological sex

+ Θ0,Θ1



Reminder: loss with one feature
• We saw that we could find the parameters of this linear relation by minimizing the 

Mean Squared Distance between the prediction of the model and the actual values


• We saw we could use Gradient Descent to do this minimization 
Age

Cigarets
θ0 ≈ 65 θ1 ≈ 0.7 θ0 ≈ 90 θ1 ≈ − 0.7

Age

Cigarets

MeanSquaredDistance = 294.7 MeanSquaredDistance = 18.3



Linear Regression with more than one feature

• The loss is defined as before: the average of the squared distance 
between model prediction and real example values

MeanSquaredDistance =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

daily cigarets bmi is male age of death
0 5.0 18.5 1.0 79.8
1 9.0 45.1 0.0 56.8
2 38.0 14.2 0.0 61.4
3 12.0 48.5 1.0 37.5
7 25.0 33.6 1.0 63.0
8 24.0 45.2 1.0 39.3
9… …. …. ….

Model prediction for example i. Real value for example i.

agemodel = θ0 + θ1 × cig + θ2 × bmi + θ3 × ismale



Small Exercise: compute the loss

daily cigarets bmi is male age of death
0 5.0 18 0.0 80
1 9.0 45 1.0 57
2 38.0 16 0.0 61

• The loss is defined as before: the average of the squared distance 
between model prediction and real example values

MeanSquaredDistance =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Model prediction for example i. Real value for example i.

agemodel = θ0 + θ1 × cig + θ2 × bmi + θ3 × ismale

θ0 = 90 θ1 = − 1 θ2 = − 0.1 θ3 = − 6
Compute the model prediction for each of the examples. 

Then, compute the loss.



daily cigarets bmi is male age of death
0 5.0 18 0.0 80
1 9.0 45 1.0 57
2 38.0 16 0.0 61

MeanSquaredDistance =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Model prediction for example i. Real value for example i.

agemodel = θ0 + θ1 × cig + θ2 × bmi + θ3 × ismale

θ0 = 90 θ1 = − 1 θ2 = − 0.1 θ3 = − 6



What is the gradient?
• To do it a bit differently than last time: let us note the error on example i 

as:
errori = model(cigi, bmii, ismalei) − agei

MeanSquaredDistance =
1
N

⋅ ∑
i

(errori)2
• Then our loss is equal to: (The mean squared distance is 

actually also often called the mean 
squared error)

• Then our loss is equal to:

∂
∂θk

MeanSquaredDistance =
1
N

⋅ ∑
i

2 × errori ×
∂

∂θk
errori

Using linearity and the fact that

d
dx

[ f(x)]2 = 2 × f(x) ×
d

dx
f(x)



What is the gradient?

agemodel = θ0 + θ1 × cig + θ2 × bmi + θ3 × ismaleerrori = model(cigi, bmii, ismalei) − agei

∂
∂θk

MeanSquaredDistance =
1
N

⋅ ∑
i

2 × errori ×
∂

∂θk
errori

∂
∂θ0

errori = 1

∂
∂θ1

errori = cigi

∂
∂θ2

errori = bmii

∂
∂θ3

errori = ismalei

1
N

⋅ ∑
i

2 × errori × 1

1
N

⋅ ∑
i

2 × errori × cigi

1
N

⋅ ∑
i

2 × errori × bmii

1
N

⋅ ∑
i

2 × errori × ismalei

gradient =

(we know have 4 
parameters, so gradient is a 

4-dimesnional vector)



Small Exercise: compute the gradient

daily cigarets bmi is male age of death
0 5.0 18 0.0 80
1 9.0 45 1.0 57
2 38.0 16 0.0 61

• Let us compute the gradient for this examples and Θk:

θ0 = 90 θ1 = − 1 θ2 = − 0.1 θ3 = − 6

Note you already computed the errors when you 
computed the loss in previous exercise 

1
N

⋅ ∑
i

2 × errori × 1

1
N

⋅ ∑
i

2 × errori × cigi

1
N

⋅ ∑
i

2 × errori × bmii

1
N

⋅ ∑
i

2 × errori × ismalei

gradient =

agemodel = θ0 + θ1 × cig + θ2 × bmi + θ3 × ismaleerrori = model(cigi, bmii, ismalei) − agei



• Let us compute the gradient for this examples and Θk:

daily cigarets bmi is male age of death
0 5.0 18 0.0 80
1 9.0 45 1.0 57
2 38.0 16 0.0 61

θ0 = 90 θ1 = − 1 θ2 = − 0.1 θ3 = − 6

Note you already computed the errors when you 
computed the loss in previous exercise 

1
N

⋅ ∑
i

2 × errori × 1

1
N

⋅ ∑
i

2 × errori × cigi

1
N

⋅ ∑
i

2 × errori × bmii

1
N

⋅ ∑
i

2 × errori × ismalei

gradient =



Gradient Descent

Initialize    

Compute grad 
model

Update      : 

θ := θ − lr ⋅ grad ⋅ model( θ )

θ = [θ0, θ1, θ2, θ3]

grad ⋅ model( θ ) = [
∂f

∂θ0
, . . .

∂f
∂θ3

]

θ

θ

• Now that we know how to compute the gradient, we can find the optimal 
parameters with gradient descent:



Feature Scaling
• We can see that our features have very different ranges and means: 

• “daily cigarets” is from 0 to 50


• “bmi” is from 15 to 50


• “is_male” is from 0 to 1


• Usually, features having different ranges makes learning/gradient descent more difficult

daily cigarets bmi is male age of death
0 5.0 18.5 1.0 79.8
1 9.0 45.1 0.0 56.8
2 38.0 14.2 0.0 61.4
3 12.0 48.5 1.0 37.5
4 34.0 19.2 0.0 68.4
5 5.0 38.6 0.0 69.3
6 31.0 33.8 1.0 54.8
7 25.0 33.6 1.0 63.0
8 24.0 45.2 1.0 39.3
9 … …. …. ….

The solution is to scale all the 
features to the same range

new =
old − mean(old)

max(old) − min(old)

This way, all features have ranges between -1 
and 1, and mean equal to zero 



Feature Scaling
• After the features have been scaled, we apply Gradient Descent as usual:

daily cigarets bmi is male age of death
0 24.0 44.4 1.0 43.4
1 37.0 47.7 1.0 25.2
2 11.0 14.1 0.0 73.1
3 33.0 49.3 1.0 25.5
4 27.0 20.4 0.0 70.5

5 27.0 38.2 1.0 52.1

6 6.0 22.2 1.0 78.6
7 31.0 17.1 0.0 64.6
8 28.0 23.3 0.0 71.3
9 15.0 31.4 1.0 66.8

daily cigarets bmi is male age of death
0 0.064957 0.313072 0.433333 43.4
1 0.398291 0.405509 0.433333 25.2
2 -0.268376 -0.535668 -0.566667 73.1
3 0.295726 0.450327 0.433333 25.5
4 0.141880 -0.359197 -0.566667 70.5
5 0.141880 0.139402 0.433333 52.1
6 -0.396581 -0.308777 0.433333 78.6
7 0.244444 -0.451634 -0.566667 64.6
8 0.167521 -0.277965 -0.566667 71.3
9 -0.165812 -0.051074 0.433333 66.8

new =
old − mean(old)

max(old) − min(old)



Learning more complicated functions
• So far, we have only tried to learn linear functions of the data


• We might want to learn more complicated functions


• For example, having a high BMI reduce life expectancy


• But having a very low BMI also reduces life expectancy BMI

Age

Age

BMI

Age

BMI

We need a more 
complex model!



Learning more complex functions: “Expanding the 
feature space”

• One neat trick to learn more complex functions: Create additional features from existing features


• Then apply linear regression


• Example: From the feature bmi, we add bmi2, bmi3 and bmi4:

bmi bmi^2 bmi^3 bmi^4 age of death
0 44.4 1971.36 87528.384 3.88E+06 43.4
1 47.7 2275.29 108531.333 5.17E+06 25.2
2 14.1 198.81 2803.221 3.95E+04 73.1
3 49.3 2430.49 119823.157 5.90E+06 25.5
4 20.4 416.16 8489.664 1.73E+05 70.5
5 38.2 1459.24 55742.968 2.12E+06 52.1
6… … … … …

bmi age of death
0 44.4 43.4
1 47.7 25.2
2 14.1 73.1
3 49.3 25.5
4 20.4 70.5
5 38.2 52.1
6 … …

agemodel = θ0 + θ1 × bmi + θ2 × bmi2 + θ3 × bmi3 + θ4 × bmi4



Learning more complicated functions
• This way, we can learn much more complex functions


• After finding the optimal parameters by gradient descent on the  Mean Squared Distance:

BMI

Age Age

BMI

agemodel = θ0 + θ1 × bmi + θ2 × bmi2 + θ3 × bmi3 + θ4 × bmi4



Learning Functions that are too complicated
• Now, we might think: 

bmi bmi^2 bmi^3 bmi^4 bmi^5 sin(bmi) log(bmi) … age of death

0 44.4 1971.36 87528.384 3.886260E+06 1.725500E+08 0.405662 3.793239… 43.4

1 47.7 2275.29 108531.333 5.176945E+06 2.469403E+08 -0.544766 3.864931… 25.2

2 14.1 198.81 2803.221 3.952542E+04 5.573084E+05 0.999309 2.646175… 73.1

3 49.3 2430.49 119823.157 5.907282E+06 2.912290E+08 -0.822324 3.897924… 25.5

4 20.4 416.16 8489.664 1.731891E+05 3.533059E+06 0.999793 3.015535… 70.5

5 38.2 1459.24 55742.968 2.129381E+06 8.134237E+07 0.480205 3.642836… 52.1

6 22.2 492.84 10941.048 2.428913E+05 5.392186E+06 -0.207336 3.100092… 78.6

7 17.1 292.41 5000.211 8.550361E+04 1.462112E+06 -0.984065 2.839078… 64.6

8 … … … … … …. … … …
agemodel = θ0 + θ1 × bmi + θ2 × bmi2 + θ3 × bmi3 + θ4 × bmi4 + θ5 × bmi5 + θ6 × sin(bmi) + θ7 × log(bmi) + . . .

Cool. I am going to add as 
many variations of the features 
as I can. Then my loss (Mean 
Squared Distance) will drop to 

zero! 



Learning Functions that are too complicated

• The problem: this is what you are going to get:

MeanSquaredDistance = 1.3

Cool. My loss (Mean Squared 
Distance) is lower than before. 

My model is better now!

Or is it really better???
BMI

Age



Learning Functions that are too complicated

• The problem: this is what you are going to get:

MeanSquaredDistance = 1.3

Cool. My loss (Mean Squared 
Distance) is lower than before. 

My model is better now!

Or is it really better???

The model predict that somebody with BMI 48 will die at 18 
But somebody with BMI 51 is predicted to die at  80

BMI

Age



Overfitting
• It turns out that minimizing the loss does not always give the best model….


• This phenomenon is called overfitting

Age

BMI

Age

BMI
MeanSquaredDistance = 1.3MeanSquaredDistance = 11.2



Overfitting
• Overfitting is to Machine Learning what Rote Learning is to Human Learning


• Instead of understanding the data, the model just memorized all of the examples


• If we ask it to predict the age of death of an example it has seen, it will give very 
good prediction


• But it will give very bad prediction as soon as we ask him to make a prediction 
for someone that was not in the example data.


• Very similar to a student that memorize without understanding the answer to a 
set of exercises in a class. He will do very well in the exam if the exam contains 
the exercises he studied, but very bad if the exercises are a bit different.



How to detect overfitting?
• Pretty much like we do with humans: We evaluate them with different exercises than the 

ones they were trained for.


• In practice, it means we separate our example data  in 2: 


• Training Data


• Test Data


• We use the training data to do the Learning (we train the model)


• We use the test data to evaluate the quality of the learning (we test the model)



How to detect overfitting?
• In blue: training examples


• In red: test examples
Age Age Age

BMI BMI BMI

MeanSquaredDistance = 11.2 MeanSquaredDistance = 1.3MeanSquaredDistance = 18.6

TestMeanSquaredDistance = 17.3 TestMeanSquaredDistance = 11.8 TestMeanSquaredDistance = 24.5



How to detect overfitting?

Age Age Age

BMI BMI BMI

MeanSquaredDistance = 11.2 MeanSquaredDistance = 1.3MeanSquaredDistance = 18.6

TestMeanSquaredDistance = 17.3 TestMeanSquaredDistance = 11.8 TestMeanSquaredDistance = 24.5

Linear Model More Complex Model “Too Complex” Model

• If we see a model with very low training loss and high test loss: it is 
overfitting!



How to prevent overfitting?
• A very simple and very efficient method for preventing overfitting is called 

“early stopping”


• During the gradient descent, we check the test loss at each iteration. 
When the test loss starts to increase (or stay unchanged) for a few 
iteration, we stop the training



Gradient Descent with Early Stopping
Initialize    

Compute grad f(x)

Update      : 

x := x − lr ⋅ grad ⋅ f( x )

Test 
loss is 

increasing
Stop training or we are 

going to overfit
Yes

No

x

x



How to prevent overfitting?
• Another method is to reduce the capacity of the model


• Roughly speaking, the capacity of a model is its ability to adapt to a large 
number of examples


• The capacity of a model will increase with the number of parameters



How to prevent overfitting: Capacity

Age Age Age

BMI BMI BMI

age = θ0 + θ1 × bmi agemodel = θ0 + θ1 × bmi + θ2 × bmi2

+θ3 × bmi3 + θ4 × bmi4

agemodel = θ0 + θ1 × bmi + θ2 × bmi2

+θ3 × bmi3 + θ4 × bmi4 + θ5 × bmi5

+θ6 × sin(bmi) + θ7 × log(bmi) + . . .

Increasing Capacity



How to prevent overfitting?

• Models with high capacity can learn more complicated relations


• But they overfit more easily


• A model with very high capacity has the ability to memorize all the training 
examples (the rote learning problem)


• If we reduce the capacity of a model, we can make it less prone to 
overfitting



How to prevent overfitting: Capacity

• The simplest way to reduce capacity is to remove some parameters in the 
model:

agemodel = θ0 + θ1 × bmi + θ2 × bmi2 + θ3 × bmi3 + θ4 × bmi4 + θ5 × bmi5 + θ6 × sin(bmi) + θ7 × log(bmi) + . . .

agemodel = θ0 + θ1 × bmi + θ2 × bmi2 + θ3 × bmi4 + θ4 × bmi5



How to prevent overfitting: Capacity

• Another way to reduce the capacity is “force” the model to use small 
values for the weights


• By default, the parameters Θk can take any value: -100 000, 0.1, 1 000 
000


• If we forbid the model to use very high values for Θk, we reduce its 
capacity: it cannot adapt to data as well as before


• Most practical way to forbid high values: “L2 Regularization”



L2 Regularization
• We note |Θ|2 the sum of the square of all parameters Θk (this is called the 

“L2 Norm”)


• Then we add this quantity to the loss we want to minimize:

Loss = MeanSquaredDistance =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2

Loss =
1
N

⋅ ∑
i

(model(cigi, bmii, ismalei) − agei)2 + λ | ⃗θ |2

• Then we apply Gradient Descent to this new loss



Next
• Next time, we will consider Classification Problems:


• Predicting if some symptoms are the sign of a disease or not…


• Predicting if an image represents a cat or a dog


• Predicting if a text is in French, German or Japanese


• Also: a small assignment is coming this week (for a deadline in two weeks)


• Will be simple. Just for a review of what we have seen so far.


