NICT_LOGO.JPG KYOTO-U_LOGO.JPG

WAT

The Workshop on Asian Translation
Evaluation Results

[EVALUATION RESULTS TOP] | [BLEU] | [RIBES] | [AMFM] | [HUMAN (WAT2022)] | [HUMAN (WAT2021)] | [HUMAN (WAT2020)] | [HUMAN (WAT2019)] | [HUMAN (WAT2018)] | [HUMAN (WAT2017)] | [HUMAN (WAT2016)] | [HUMAN (WAT2015)] | [HUMAN (WAT2014)] | [EVALUATION RESULTS USAGE POLICY]

BLEU


# Team Task Date/Time DataID BLEU
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1ORGANIZERja-en2018/08/14 11:07:471901---26.91---- 0.00 0.00NMTNoNMT with Attention
2srcbja-en2018/08/26 11:09:502152---28.46---- 0.00 0.00NMTNoTransformer, average checkpoints.
3NICT-5ja-en2018/08/27 15:01:052174---28.63---- 0.00 0.00NMTNoTransformer vanilla model using 3M sentences.
4NICT-5ja-en2018/09/10 14:55:372273---29.65---- 0.00 0.00NMTNoMLNMT
5Osaka-Uja-en2018/09/15 23:05:122440---26.19---- 0.00 0.00NMTYesrewarding model
6TMUja-en2018/09/16 11:53:242461---24.94---- 0.00 0.00NMTNoBaseline-NMT ( Single )
7TMUja-en2018/09/16 12:04:362464---25.85---- 0.00 0.00NMTNoEnsemble of 6 Baseline-NMT
8TMUja-en2018/09/16 12:05:472465---25.17---- 0.00 0.00NMTNoGAN-NMT ( Single )
9TMUja-en2018/09/16 12:06:392466---24.98---- 0.00 0.00NMTNoReconstructor-NMT ( Single )
10Osaka-Uja-en2018/09/16 13:11:482472---13.97---- 0.00 0.00SMTNopreordering with neural network
11srcbja-en2018/09/16 14:51:472474---30.59---- 0.00 0.00NMTNoTransformer with relative position, ensemble of 3 models.
12TMUja-en2018/09/16 17:02:152483---25.45---- 0.00 0.00NMTNoEnsemble of 6 NMT ( 2 Baseline + 2 Reconstructor + 2 GAN )
13NICT-5ja-en2019/07/16 17:11:382718---29.12------NMTNoRSNMT 6 layer with distillation
14srcbja-en2019/07/25 11:52:482919---30.62------NMTNoTransformer (Big) with relative position, average checkpoints.
15ykkdja-en2019/07/26 12:26:032989---27.63------NMTNoFully Character-level,6 bi-LSTM (512*2) for Encoder, 6 LSTM for Decoder. Middle dense layer. Beam w/4.Length norm set to 0.2
16NICT-5ja-en2019/07/26 18:02:473041---26.99------NMTNoRSNMT 6 layer
17NICT-2ja-en2019/07/26 22:33:303085---28.61------NMTNoTransformer, sigle model w/ long warm-up and self-training
18NICT-2ja-en2019/07/26 22:37:223086---29.40------NMTNoTransformer, ensemble of 4 models w/ long warm-up and self-training
19KNU_Hyundaija-en2019/07/27 09:28:373173---30.88------NMTNoTransformer Base, relative position, BT, r2l reranking, ensemble of 3 models
20srcbja-en2019/07/27 15:27:013205---30.92------NMTNoTransformer (Big) with relative position, data augmentation, average checkpoints, Bayes re-ranking.
21NTTja-en2019/07/28 11:18:593225---30.56------SMTNoASPEC first 1.5M +last 1.5M (fwd), 6 ensemble
22NTTja-en2019/07/28 15:11:043233---30.28------NMTYesParaCrawl + (ASPEC first 1.5M + Synthetic 1.5M) * 2 oversampling, fine-tune ASPEC, SINGLE MODEL
23AISTAIja-en2019/08/01 10:44:493260---29.01------NMTNoTransformer (big), 1.5M sentences, train_steps=300000, Averaged the last 10 ckpts, by Tensor2Tensor.
24AISTAIja-en2019/08/31 21:28:133361---29.71------NMTNoTransformer, 1.5M sentences, relative position, ensemble of 4 models, by OpenNMT-py.
25NICT-5ja-en2021/03/18 23:22:534574---28.35------NMTNoMy NMT implementation. Beam size 8. LP 0.6
26ORGANIZERja-en2014/07/11 19:45:322---18.72-- 0.00 0.00 0.00 0.00SMTNoHierarchical Phrase-based SMT (2014)
27ORGANIZERja-en2014/07/11 19:49:576---18.45-- 0.00 0.00 0.00 0.00SMTNoPhrase-based SMT
28ORGANIZERja-en2014/07/11 19:59:559---20.36-- 0.00 0.00 0.00 0.00SMTNoString-to-Tree SMT (2014)
29ORGANIZERja-en2014/07/18 11:08:1335---15.08-- 0.00 0.00 0.00 0.00OtherYesOnline D (2014)
30NAISTja-en2014/07/19 01:04:4846---23.82-- 0.00 0.00 0.00 0.00SMTYesTravatar-based Forest-to-String SMT System with Extra Dictionaries
31ORGANIZERja-en2014/07/21 11:53:4876---14.82-- 0.00 0.00 0.00 0.00OtherYesRBMT E
32ORGANIZERja-en2014/07/21 11:57:0879---13.86-- 0.00 0.00 0.00 0.00OtherYesRBMT F
33ORGANIZERja-en2014/07/22 11:22:4087---10.64-- 0.00 0.00 0.00 0.00OtherYesOnline C (2014)
34ORGANIZERja-en2014/07/23 14:52:3196---15.29-- 0.00 0.00 0.00 0.00OtherYesRBMT D (2014)
35EIWAja-en2014/07/30 16:07:14116---19.86-- 0.00 0.00 0.00 0.00SMT and RBMTYesCombination of RBMT and SPE(statistical post editing)
36NAISTja-en2014/07/31 11:40:53119---23.29-- 0.00 0.00 0.00 0.00SMTNoTravatar-based Forest-to-String SMT System
37NAISTja-en2014/08/01 17:35:16125---23.47-- 0.00 0.00 0.00 0.00SMTNoTravatar-based Forest-to-String SMT System (Tuned BLEU+RIBES)
38Kyoto-Uja-en2014/08/19 10:24:06136---20.02-- 0.00 0.00 0.00 0.00EBMTNoOur baseline system using 3M parallel sentences.
39Senseja-en2014/08/23 05:34:03164---18.82-- 0.00 0.00 0.00 0.00SMTNoParaphrase max10
40TOSHIBAja-en2014/08/29 18:47:44240---15.69-- 0.00 0.00 0.00 0.00RBMTYesRBMT system
41TOSHIBAja-en2014/08/29 18:48:24241---20.61-- 0.00 0.00 0.00 0.00SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
42Kyoto-Uja-en2014/08/31 23:36:50256---20.60-- 0.00 0.00 0.00 0.00EBMTNoOur new baseline system after several modifications.
43Kyoto-Uja-en2014/09/01 10:27:54262---21.07-- 0.00 0.00 0.00 0.00EBMTNoOur new baseline system after several modifications + 20-best parses, KN7, RNNLM reranking
44NIIja-en2014/09/02 11:42:01271---17.47-- 0.00 0.00 0.00 0.00SMTNoOur Baseline
45NIIja-en2014/09/02 11:42:53272---17.01-- 0.00 0.00 0.00 0.00SMTNoOur Baseline with Preordering
46TMUja-en2014/09/07 23:28:04300---15.55-- 0.00 0.00 0.00 0.00SMTNoOur baseline system with preordering method
47TMUja-en2014/09/07 23:32:49301---15.95-- 0.00 0.00 0.00 0.00SMTNoOur baseline system with another preordering method
48TMUja-en2014/09/09 19:14:42307---15.40-- 0.00 0.00 0.00 0.00SMTNoOur baseline system
49NICTja-en2015/07/16 13:27:58488---18.98-- 0.00 0.00 0.00 0.00SMTNoour baseline (DL=6) + dependency-based pre-reordering [Ding+ 2015]
50NICTja-en2015/07/17 08:51:45489---18.09-- 0.00 0.00 0.00 0.00SMTNoour baseline: PB SMT in MOSES (DL=20) / SRILM / MeCab (IPA)
51NICTja-en2015/07/17 11:02:10492---18.96-- 0.00 0.00 0.00 0.00SMTNoour baseline (DL=9) + reverse pre-reordering [Katz-Brown & Collins 2008]
52TOSHIBAja-en2015/07/23 15:00:12506---23.00-- 0.00 0.00 0.00 0.00SMT and RBMTYesSystem combination SMT and RBMT(SPE) with RNNLM language model
53TOSHIBAja-en2015/07/28 16:44:27529---22.89-- 0.00 0.00 0.00 0.00SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
54Senseja-en2015/07/28 22:23:43530---17.04-- 0.00 0.00 0.00 0.00SMTNoBaseline-2015
55TMUja-en2015/08/04 16:32:20578---18.32-- 0.00 0.00 0.00 0.00SMTNoOur PBSMT baseline (2015)
56NAISTja-en2015/08/14 17:46:43655---25.41-- 0.00 0.00 0.00 0.00SMTNoTravatar System with NeuralMT Reranking and Parser Self Training
57Senseja-en2015/08/18 21:54:39702---16.72-- 0.00 0.00 0.00 0.00SMTYesPassive JSTx1
58Senseja-en2015/08/18 21:58:08708---16.49-- 0.00 0.00 0.00 0.00SMTYesPervasive JSTx1
59NAISTja-en2015/08/24 23:53:53757---24.77-- 0.00 0.00 0.00 0.00SMTNoTravatar System with NeuralMT Reranking
60NAISTja-en2015/08/25 13:02:45766---22.62-- 0.00 0.00 0.00 0.00SMTNoTravatar System with Parser Self Training
61NAISTja-en2015/08/25 13:03:48767---22.16-- 0.00 0.00 0.00 0.00SMTNoTravatar System Baseline
62ORGANIZERja-en2015/08/25 18:57:25775---16.85-- 0.00 0.00 0.00 0.00OtherYesOnline D (2015)
63Kyoto-Uja-en2015/08/27 14:40:32796---21.31-- 0.00 0.00 0.00 0.00EBMTNoKyotoEBMT system without reranking
64Senseja-en2015/08/28 19:25:25822---18.20-- 0.00 0.00 0.00 0.00SMTNoBaseline-2015 (train1 only)
65Senseja-en2015/08/29 04:32:36824---18.09-- 0.00 0.00 0.00 0.00SMTNoBaseline-2015 (train123)
66Kyoto-Uja-en2015/08/30 13:02:18829---22.89-- 0.00 0.00 0.00 0.00EBMTNoKyotoEBMT system with bilingual RNNLM reranking
67TMUja-en2015/09/01 05:46:50847---15.85-- 0.00 0.00 0.00 0.00SMTNoPBSMT with dependency based phrase segmentation
68Senseja-en2015/09/01 17:42:28860---16.96-- 0.00 0.00 0.00 0.00SMTYesPassive JSTx1
69Senseja-en2015/09/01 17:42:58861---16.61-- 0.00 0.00 0.00 0.00SMTYesPervasive JSTx1
70ORGANIZERja-en2015/09/10 13:41:03877---20.36-- 0.00 0.00 0.00 0.00SMTNoString-to-Tree SMT (2015)
71ORGANIZERja-en2015/09/10 14:38:13887---15.29-- 0.00 0.00 0.00 0.00OtherYesRBMT D (2015)
72ORGANIZERja-en2015/09/11 10:54:33892---10.29-- 0.00 0.00 0.00 0.00OtherYesOnline C (2015)
73ORGANIZERja-en2016/07/26 11:37:381042---16.91--- 0.00 0.00 0.00OtherYesOnline D (2016)
74NICT-2ja-en2016/08/05 17:50:251104---21.54--- 0.00 0.00 0.00SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
75NAISTja-en2016/08/09 16:14:051122---26.39--- 0.00 0.00 0.00SMTNoNeural MT w/ Lexicon and MinRisk Training 4 Ensemble
76bjtu_nlpja-en2016/08/17 19:51:241168---18.34--- 0.00 0.00 0.00NMTNoRNN Encoder-Decoder with attention mechanism, single model
77Kyoto-Uja-en2016/08/18 15:17:051182---26.22--- 0.00 0.00 0.00NMTNoEnsemble of 4 single-layer model (30k voc)
78Kyoto-Uja-en2016/08/19 01:31:011189---21.22--- 0.00 0.00 0.00EBMTNoKyotoEBMT 2016 w/o reranking
79TMUja-en2016/08/20 07:39:021222---18.29--- 0.00 0.00 0.00NMTNo2016 our proposed method to control output voice
80TMUja-en2016/08/20 14:31:481234---18.45--- 0.00 0.00 0.00NMTNo 6 ensemble
81Kyoto-Uja-en2016/08/20 15:07:471246---24.71--- 0.00 0.00 0.00NMTNovoc src:200k voc tgt: 52k + BPE 2-layer self-ensembling
82NAISTja-en2016/08/20 15:33:121247---26.12--- 0.00 0.00 0.00SMTNoNeural MT w/ Lexicon 6 Ensemble
83NAISTja-en2016/08/27 00:05:381275---27.55--- 0.00 0.00 0.00SMTNoNeural MT w/ Lexicon and MinRisk Training 6 Ensemble
84ORGANIZERja-en2016/11/16 10:29:511333---22.04--- 0.00 0.00 0.00NMTYesOnline D (2016/11/14)
85NICT-2ja-en2017/07/26 13:54:281476---24.79--- 0.00 0.00 0.00NMTNoNMT Single Model: BPE50k, Bi-LSTM(500*2) Encoder, LSTM(1000) Left-to-Right Decoder
86NICT-2ja-en2017/07/26 14:04:381480---26.76--- 0.00 0.00 0.00NMTNoNMT 6 Ensembles * Bi-directional Reranking
87NTTja-en2017/07/30 20:43:071616---27.43--- 0.00 0.00 0.00NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
88CUNIja-en2017/07/31 22:30:521665---23.43--- 0.00 0.00 0.00NMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding, 1M sentences
89NTTja-en2017/08/01 04:29:021681---28.36--- 0.00 0.00 0.00NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
90TMUja-en2017/08/01 11:10:491695---21.00--- 0.00 0.00 0.00NMTNoour baseline system in 2017
91TMUja-en2017/08/01 11:35:081703---23.03--- 0.00 0.00 0.00NMTNobaseline system with beam20
92TMUja-en2017/08/01 12:14:411712---22.87--- 0.00 0.00 0.00NMTNothe ensemble system of different dropout rate.
93Kyoto-Uja-en2017/08/01 13:42:251717---27.53--- 0.00 0.00 0.00NMTNoEnsemble of 4 BPE averaged parameters
94NTTja-en2017/08/01 14:50:511724---27.62--- 0.00 0.00 0.00NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking, add 1M pseudo training data (generated from provided training data)
95NTTja-en2017/08/01 15:53:151732---28.15--- 0.00 0.00 0.00NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking, add 1M pseudo training data (generated from training data)
96Kyoto-Uja-en2017/08/01 16:38:211733---27.66--- 0.00 0.00 0.00NMTNoEnsemble of 4 BPE, averaged Coverage penalty
97ORGANIZERja-en2017/08/02 01:03:081736---28.06--- 0.00 0.00 0.00NMTNoGoogle's "Attention Is All You Need"
98TMUja-en2017/08/04 11:16:361750---24.55--- 0.00 0.00 0.00NMTNobeam_size: 10, ensemble of different dropout rates.

Notice:

Back to top

RIBES


# Team Task Date/Time DataID RIBES
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1ORGANIZERja-en2018/08/14 11:07:471901---0.764968----0.0000000.000000NMTNoNMT with Attention
2srcbja-en2018/08/26 11:09:502152---0.767194----0.0000000.000000NMTNoTransformer, average checkpoints.
3NICT-5ja-en2018/08/27 15:01:052174---0.765933----0.0000000.000000NMTNoTransformer vanilla model using 3M sentences.
4NICT-5ja-en2018/09/10 14:55:372273---0.774788----0.0000000.000000NMTNoMLNMT
5Osaka-Uja-en2018/09/15 23:05:122440---0.749825----0.0000000.000000NMTYesrewarding model
6TMUja-en2018/09/16 11:53:242461---0.757955----0.0000000.000000NMTNoBaseline-NMT ( Single )
7TMUja-en2018/09/16 12:04:362464---0.761450----0.0000000.000000NMTNoEnsemble of 6 Baseline-NMT
8TMUja-en2018/09/16 12:05:472465---0.757413----0.0000000.000000NMTNoGAN-NMT ( Single )
9TMUja-en2018/09/16 12:06:392466---0.759238----0.0000000.000000NMTNoReconstructor-NMT ( Single )
10Osaka-Uja-en2018/09/16 13:11:482472---0.665391----0.0000000.000000SMTNopreordering with neural network
11srcbja-en2018/09/16 14:51:472474---0.777896----0.0000000.000000NMTNoTransformer with relative position, ensemble of 3 models.
12TMUja-en2018/09/16 17:02:152483---0.759790----0.0000000.000000NMTNoEnsemble of 6 NMT ( 2 Baseline + 2 Reconstructor + 2 GAN )
13NICT-5ja-en2019/07/16 17:11:382718---0.772422------NMTNoRSNMT 6 layer with distillation
14srcbja-en2019/07/25 11:52:482919---0.777801------NMTNoTransformer (Big) with relative position, average checkpoints.
15ykkdja-en2019/07/26 12:26:032989---0.769061------NMTNoFully Character-level,6 bi-LSTM (512*2) for Encoder, 6 LSTM for Decoder. Middle dense layer. Beam w/4.Length norm set to 0.2
16NICT-5ja-en2019/07/26 18:02:473041---0.764672------NMTNoRSNMT 6 layer
17NICT-2ja-en2019/07/26 22:33:303085---0.756346------NMTNoTransformer, sigle model w/ long warm-up and self-training
18NICT-2ja-en2019/07/26 22:37:223086---0.760796------NMTNoTransformer, ensemble of 4 models w/ long warm-up and self-training
19KNU_Hyundaija-en2019/07/27 09:28:373173---0.774653------NMTNoTransformer Base, relative position, BT, r2l reranking, ensemble of 3 models
20srcbja-en2019/07/27 15:27:013205---0.778832------NMTNoTransformer (Big) with relative position, data augmentation, average checkpoints, Bayes re-ranking.
21NTTja-en2019/07/28 11:18:593225---0.773281------SMTNoASPEC first 1.5M +last 1.5M (fwd), 6 ensemble
22NTTja-en2019/07/28 15:11:043233---0.770096------NMTYesParaCrawl + (ASPEC first 1.5M + Synthetic 1.5M) * 2 oversampling, fine-tune ASPEC, SINGLE MODEL
23AISTAIja-en2019/08/01 10:44:493260---0.760656------NMTNoTransformer (big), 1.5M sentences, train_steps=300000, Averaged the last 10 ckpts, by Tensor2Tensor.
24AISTAIja-en2019/08/31 21:28:133361---0.769105------NMTNoTransformer, 1.5M sentences, relative position, ensemble of 4 models, by OpenNMT-py.
25NICT-5ja-en2021/03/18 23:22:534574---0.768617------NMTNoMy NMT implementation. Beam size 8. LP 0.6
26ORGANIZERja-en2014/07/11 19:45:322---0.651066--0.0000000.0000000.0000000.000000SMTNoHierarchical Phrase-based SMT (2014)
27ORGANIZERja-en2014/07/11 19:49:576---0.645137--0.0000000.0000000.0000000.000000SMTNoPhrase-based SMT
28ORGANIZERja-en2014/07/11 19:59:559---0.678253--0.0000000.0000000.0000000.000000SMTNoString-to-Tree SMT (2014)
29ORGANIZERja-en2014/07/18 11:08:1335---0.643588--0.0000000.0000000.0000000.000000OtherYesOnline D (2014)
30NAISTja-en2014/07/19 01:04:4846---0.722599--0.0000000.0000000.0000000.000000SMTYesTravatar-based Forest-to-String SMT System with Extra Dictionaries
31ORGANIZERja-en2014/07/21 11:53:4876---0.663851--0.0000000.0000000.0000000.000000OtherYesRBMT E
32ORGANIZERja-en2014/07/21 11:57:0879---0.661387--0.0000000.0000000.0000000.000000OtherYesRBMT F
33ORGANIZERja-en2014/07/22 11:22:4087---0.624827--0.0000000.0000000.0000000.000000OtherYesOnline C (2014)
34ORGANIZERja-en2014/07/23 14:52:3196---0.683378--0.0000000.0000000.0000000.000000OtherYesRBMT D (2014)
35EIWAja-en2014/07/30 16:07:14116---0.706686--0.0000000.0000000.0000000.000000SMT and RBMTYesCombination of RBMT and SPE(statistical post editing)
36NAISTja-en2014/07/31 11:40:53119---0.723541--0.0000000.0000000.0000000.000000SMTNoTravatar-based Forest-to-String SMT System
37NAISTja-en2014/08/01 17:35:16125---0.723670--0.0000000.0000000.0000000.000000SMTNoTravatar-based Forest-to-String SMT System (Tuned BLEU+RIBES)
38Kyoto-Uja-en2014/08/19 10:24:06136---0.689829--0.0000000.0000000.0000000.000000EBMTNoOur baseline system using 3M parallel sentences.
39Senseja-en2014/08/23 05:34:03164---0.646204--0.0000000.0000000.0000000.000000SMTNoParaphrase max10
40TOSHIBAja-en2014/08/29 18:47:44240---0.687122--0.0000000.0000000.0000000.000000RBMTYesRBMT system
41TOSHIBAja-en2014/08/29 18:48:24241---0.707936--0.0000000.0000000.0000000.000000SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
42Kyoto-Uja-en2014/08/31 23:36:50256---0.701154--0.0000000.0000000.0000000.000000EBMTNoOur new baseline system after several modifications.
43Kyoto-Uja-en2014/09/01 10:27:54262---0.698953--0.0000000.0000000.0000000.000000EBMTNoOur new baseline system after several modifications + 20-best parses, KN7, RNNLM reranking
44NIIja-en2014/09/02 11:42:01271---0.630825--0.0000000.0000000.0000000.000000SMTNoOur Baseline
45NIIja-en2014/09/02 11:42:53272---0.610833--0.0000000.0000000.0000000.000000SMTNoOur Baseline with Preordering
46TMUja-en2014/09/07 23:28:04300---0.644698--0.0000000.0000000.0000000.000000SMTNoOur baseline system with preordering method
47TMUja-en2014/09/07 23:32:49301---0.648879--0.0000000.0000000.0000000.000000SMTNoOur baseline system with another preordering method
48TMUja-en2014/09/09 19:14:42307---0.613119--0.0000000.0000000.0000000.000000SMTNoOur baseline system
49NICTja-en2015/07/16 13:27:58488---0.659883--0.0000000.0000000.0000000.000000SMTNoour baseline (DL=6) + dependency-based pre-reordering [Ding+ 2015]
50NICTja-en2015/07/17 08:51:45489---0.639711--0.0000000.0000000.0000000.000000SMTNoour baseline: PB SMT in MOSES (DL=20) / SRILM / MeCab (IPA)
51NICTja-en2015/07/17 11:02:10492---0.684485--0.0000000.0000000.0000000.000000SMTNoour baseline (DL=9) + reverse pre-reordering [Katz-Brown & Collins 2008]
52TOSHIBAja-en2015/07/23 15:00:12506---0.715795--0.0000000.0000000.0000000.000000SMT and RBMTYesSystem combination SMT and RBMT(SPE) with RNNLM language model
53TOSHIBAja-en2015/07/28 16:44:27529---0.718540--0.0000000.0000000.0000000.000000SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
54Senseja-en2015/07/28 22:23:43530---0.627006--0.0000000.0000000.0000000.000000SMTNoBaseline-2015
55TMUja-en2015/08/04 16:32:20578---0.641456--0.0000000.0000000.0000000.000000SMTNoOur PBSMT baseline (2015)
56NAISTja-en2015/08/14 17:46:43655---0.749573--0.0000000.0000000.0000000.000000SMTNoTravatar System with NeuralMT Reranking and Parser Self Training
57Senseja-en2015/08/18 21:54:39702---0.609632--0.0000000.0000000.0000000.000000SMTYesPassive JSTx1
58Senseja-en2015/08/18 21:58:08708---0.600806--0.0000000.0000000.0000000.000000SMTYesPervasive JSTx1
59NAISTja-en2015/08/24 23:53:53757---0.743771--0.0000000.0000000.0000000.000000SMTNoTravatar System with NeuralMT Reranking
60NAISTja-en2015/08/25 13:02:45766---0.722798--0.0000000.0000000.0000000.000000SMTNoTravatar System with Parser Self Training
61NAISTja-en2015/08/25 13:03:48767---0.713083--0.0000000.0000000.0000000.000000SMTNoTravatar System Baseline
62ORGANIZERja-en2015/08/25 18:57:25775---0.676609--0.0000000.0000000.0000000.000000OtherYesOnline D (2015)
63Kyoto-Uja-en2015/08/27 14:40:32796---0.706480--0.0000000.0000000.0000000.000000EBMTNoKyotoEBMT system without reranking
64Senseja-en2015/08/28 19:25:25822---0.629066--0.0000000.0000000.0000000.000000SMTNoBaseline-2015 (train1 only)
65Senseja-en2015/08/29 04:32:36824---0.633073--0.0000000.0000000.0000000.000000SMTNoBaseline-2015 (train123)
66Kyoto-Uja-en2015/08/30 13:02:18829---0.724555--0.0000000.0000000.0000000.000000EBMTNoKyotoEBMT system with bilingual RNNLM reranking
67TMUja-en2015/09/01 05:46:50847---0.628897--0.0000000.0000000.0000000.000000SMTNoPBSMT with dependency based phrase segmentation
68Senseja-en2015/09/01 17:42:28860---0.610775--0.0000000.0000000.0000000.000000SMTYesPassive JSTx1
69Senseja-en2015/09/01 17:42:58861---0.609008--0.0000000.0000000.0000000.000000SMTYesPervasive JSTx1
70ORGANIZERja-en2015/09/10 13:41:03877---0.678253--0.0000000.0000000.0000000.000000SMTNoString-to-Tree SMT (2015)
71ORGANIZERja-en2015/09/10 14:38:13887---0.683378--0.0000000.0000000.0000000.000000OtherYesRBMT D (2015)
72ORGANIZERja-en2015/09/11 10:54:33892---0.622564--0.0000000.0000000.0000000.000000OtherYesOnline C (2015)
73ORGANIZERja-en2016/07/26 11:37:381042---0.677412---0.0000000.0000000.000000OtherYesOnline D (2016)
74NICT-2ja-en2016/08/05 17:50:251104---0.708808---0.0000000.0000000.000000SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
75NAISTja-en2016/08/09 16:14:051122---0.762712---0.0000000.0000000.000000SMTNoNeural MT w/ Lexicon and MinRisk Training 4 Ensemble
76bjtu_nlpja-en2016/08/17 19:51:241168---0.690455---0.0000000.0000000.000000NMTNoRNN Encoder-Decoder with attention mechanism, single model
77Kyoto-Uja-en2016/08/18 15:17:051182---0.756601---0.0000000.0000000.000000NMTNoEnsemble of 4 single-layer model (30k voc)
78Kyoto-Uja-en2016/08/19 01:31:011189---0.705700---0.0000000.0000000.000000EBMTNoKyotoEBMT 2016 w/o reranking
79TMUja-en2016/08/20 07:39:021222---0.710613---0.0000000.0000000.000000NMTNo2016 our proposed method to control output voice
80TMUja-en2016/08/20 14:31:481234---0.711542---0.0000000.0000000.000000NMTNo 6 ensemble
81Kyoto-Uja-en2016/08/20 15:07:471246---0.750802---0.0000000.0000000.000000NMTNovoc src:200k voc tgt: 52k + BPE 2-layer self-ensembling
82NAISTja-en2016/08/20 15:33:121247---0.756956---0.0000000.0000000.000000SMTNoNeural MT w/ Lexicon 6 Ensemble
83NAISTja-en2016/08/27 00:05:381275---0.767661---0.0000000.0000000.000000SMTNoNeural MT w/ Lexicon and MinRisk Training 6 Ensemble
84ORGANIZERja-en2016/11/16 10:29:511333---0.733483---0.0000000.0000000.000000NMTYesOnline D (2016/11/14)
85NICT-2ja-en2017/07/26 13:54:281476---0.747335---0.0000000.0000000.000000NMTNoNMT Single Model: BPE50k, Bi-LSTM(500*2) Encoder, LSTM(1000) Left-to-Right Decoder
86NICT-2ja-en2017/07/26 14:04:381480---0.741329---0.0000000.0000000.000000NMTNoNMT 6 Ensembles * Bi-directional Reranking
87NTTja-en2017/07/30 20:43:071616---0.764831---0.0000000.0000000.000000NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
88CUNIja-en2017/07/31 22:30:521665---0.741699---0.0000000.0000000.000000NMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding, 1M sentences
89NTTja-en2017/08/01 04:29:021681---0.768880---0.0000000.0000000.000000NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
90TMUja-en2017/08/01 11:10:491695---0.725284---0.0000000.0000000.000000NMTNoour baseline system in 2017
91TMUja-en2017/08/01 11:35:081703---0.741175---0.0000000.0000000.000000NMTNobaseline system with beam20
92TMUja-en2017/08/01 12:14:411712---0.735908---0.0000000.0000000.000000NMTNothe ensemble system of different dropout rate.
93Kyoto-Uja-en2017/08/01 13:42:251717---0.761403---0.0000000.0000000.000000NMTNoEnsemble of 4 BPE averaged parameters
94NTTja-en2017/08/01 14:50:511724---0.763248---0.0000000.0000000.000000NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking, add 1M pseudo training data (generated from provided training data)
95NTTja-en2017/08/01 15:53:151732---0.769430---0.0000000.0000000.000000NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking, add 1M pseudo training data (generated from training data)
96Kyoto-Uja-en2017/08/01 16:38:211733---0.765464---0.0000000.0000000.000000NMTNoEnsemble of 4 BPE, averaged Coverage penalty
97ORGANIZERja-en2017/08/02 01:03:081736---0.767577---0.0000000.0000000.000000NMTNoGoogle's "Attention Is All You Need"
98TMUja-en2017/08/04 11:16:361750---0.744928---0.0000000.0000000.000000NMTNobeam_size: 10, ensemble of different dropout rates.

Notice:

Back to top

AMFM


# Team Task Date/Time DataID AMFM
Method
Other
Resources
System
Description
unuse unuse unuse unuse unuse unuse unuse unuse unuse unuse
1ORGANIZERja-en2018/08/14 11:07:471901---0.595370----0.0000000.000000NMTNoNMT with Attention
2srcbja-en2018/08/26 11:09:502152---0.605130----0.0000000.000000NMTNoTransformer, average checkpoints.
3NICT-5ja-en2018/08/27 15:01:052174---0.608070----0.0000000.000000NMTNoTransformer vanilla model using 3M sentences.
4NICT-5ja-en2018/09/10 14:55:372273---0.612060----0.0000000.000000NMTNoMLNMT
5Osaka-Uja-en2018/09/15 23:05:122440---0.588290----0.0000000.000000NMTYesrewarding model
6TMUja-en2018/09/16 11:53:242461---0.596590----0.0000000.000000NMTNoBaseline-NMT ( Single )
7TMUja-en2018/09/16 12:04:362464---0.600730----0.0000000.000000NMTNoEnsemble of 6 Baseline-NMT
8TMUja-en2018/09/16 12:05:472465---0.595850----0.0000000.000000NMTNoGAN-NMT ( Single )
9TMUja-en2018/09/16 12:06:392466---0.599110----0.0000000.000000NMTNoReconstructor-NMT ( Single )
10Osaka-Uja-en2018/09/16 13:11:482472---0.571400----0.0000000.000000SMTNopreordering with neural network
11srcbja-en2018/09/16 14:51:472474---0.619390----0.0000000.000000NMTNoTransformer with relative position, ensemble of 3 models.
12TMUja-en2018/09/16 17:02:152483---0.598770----0.0000000.000000NMTNoEnsemble of 6 NMT ( 2 Baseline + 2 Reconstructor + 2 GAN )
13NICT-5ja-en2019/07/16 17:11:382718---0.619040------NMTNoRSNMT 6 layer with distillation
14srcbja-en2019/07/25 11:52:482919---0.628070------NMTNoTransformer (Big) with relative position, average checkpoints.
15ykkdja-en2019/07/26 12:26:032989---0.619640------NMTNoFully Character-level,6 bi-LSTM (512*2) for Encoder, 6 LSTM for Decoder. Middle dense layer. Beam w/4.Length norm set to 0.2
16NICT-5ja-en2019/07/26 18:02:473041---0.608450------NMTNoRSNMT 6 layer
17NICT-2ja-en2019/07/26 22:33:303085---0.602770------NMTNoTransformer, sigle model w/ long warm-up and self-training
18NICT-2ja-en2019/07/26 22:37:223086---0.606190------NMTNoTransformer, ensemble of 4 models w/ long warm-up and self-training
19KNU_Hyundaija-en2019/07/27 09:28:373173---0.622070------NMTNoTransformer Base, relative position, BT, r2l reranking, ensemble of 3 models
20srcbja-en2019/07/27 15:27:013205---0.630150------NMTNoTransformer (Big) with relative position, data augmentation, average checkpoints, Bayes re-ranking.
21NTTja-en2019/07/28 11:18:593225---0.626880------SMTNoASPEC first 1.5M +last 1.5M (fwd), 6 ensemble
22NTTja-en2019/07/28 15:11:043233---0.626260------NMTYesParaCrawl + (ASPEC first 1.5M + Synthetic 1.5M) * 2 oversampling, fine-tune ASPEC, SINGLE MODEL
23AISTAIja-en2019/08/01 10:44:493260---0.620640------NMTNoTransformer (big), 1.5M sentences, train_steps=300000, Averaged the last 10 ckpts, by Tensor2Tensor.
24AISTAIja-en2019/08/31 21:28:133361---0.626300------NMTNoTransformer, 1.5M sentences, relative position, ensemble of 4 models, by OpenNMT-py.
25NICT-5ja-en2021/03/18 23:22:534574---0.601460------NMTNoMy NMT implementation. Beam size 8. LP 0.6
26ORGANIZERja-en2014/07/11 19:45:3220.0000000.0000000.0000000.5888800.0000000.0000000.0000000.0000000.0000000.000000SMTNoHierarchical Phrase-based SMT (2014)
27ORGANIZERja-en2014/07/11 19:49:5760.0000000.0000000.0000000.5909500.0000000.0000000.0000000.0000000.0000000.000000SMTNoPhrase-based SMT
28ORGANIZERja-en2014/07/11 19:59:5590.0000000.0000000.0000000.5934100.0000000.0000000.0000000.0000000.0000000.000000SMTNoString-to-Tree SMT (2014)
29ORGANIZERja-en2014/07/18 11:08:13350.0000000.0000000.0000000.5641700.0000000.0000000.0000000.0000000.0000000.000000OtherYesOnline D (2014)
30NAISTja-en2014/07/19 01:04:48460.0000000.0000000.0000000.6041800.0000000.0000000.0000000.0000000.0000000.000000SMTYesTravatar-based Forest-to-String SMT System with Extra Dictionaries
31ORGANIZERja-en2014/07/21 11:53:48760.0000000.0000000.0000000.5616200.0000000.0000000.0000000.0000000.0000000.000000OtherYesRBMT E
32ORGANIZERja-en2014/07/21 11:57:08790.0000000.0000000.0000000.5568400.0000000.0000000.0000000.0000000.0000000.000000OtherYesRBMT F
33ORGANIZERja-en2014/07/22 11:22:40870.0000000.0000000.0000000.4664800.0000000.0000000.0000000.0000000.0000000.000000OtherYesOnline C (2014)
34ORGANIZERja-en2014/07/23 14:52:31960.0000000.0000000.0000000.5516900.0000000.0000000.0000000.0000000.0000000.000000OtherYesRBMT D (2014)
35EIWAja-en2014/07/30 16:07:141160.0000000.0000000.0000000.5765400.0000000.0000000.0000000.0000000.0000000.000000SMT and RBMTYesCombination of RBMT and SPE(statistical post editing)
36NAISTja-en2014/07/31 11:40:531190.0000000.0000000.0000000.6034900.0000000.0000000.0000000.0000000.0000000.000000SMTNoTravatar-based Forest-to-String SMT System
37NAISTja-en2014/08/01 17:35:161250.0000000.0000000.0000000.6027800.0000000.0000000.0000000.0000000.0000000.000000SMTNoTravatar-based Forest-to-String SMT System (Tuned BLEU+RIBES)
38Kyoto-Uja-en2014/08/19 10:24:061360.0000000.0000000.0000000.5939700.0000000.0000000.0000000.0000000.0000000.000000EBMTNoOur baseline system using 3M parallel sentences.
39Senseja-en2014/08/23 05:34:031640.0000000.0000000.0000000.5875200.0000000.0000000.0000000.0000000.0000000.000000SMTNoParaphrase max10
40TOSHIBAja-en2014/08/29 18:47:442400.0000000.0000000.0000000.5529800.0000000.0000000.0000000.0000000.0000000.000000RBMTYesRBMT system
41TOSHIBAja-en2014/08/29 18:48:242410.0000000.0000000.0000000.5517400.0000000.0000000.0000000.0000000.0000000.000000SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
42Kyoto-Uja-en2014/08/31 23:36:502560.0000000.0000000.0000000.5936600.0000000.0000000.0000000.0000000.0000000.000000EBMTNoOur new baseline system after several modifications.
43Kyoto-Uja-en2014/09/01 10:27:542620.0000000.0000000.0000000.5884800.0000000.0000000.0000000.0000000.0000000.000000EBMTNoOur new baseline system after several modifications + 20-best parses, KN7, RNNLM reranking
44NIIja-en2014/09/02 11:42:012710.0000000.0000000.0000000.5828000.0000000.0000000.0000000.0000000.0000000.000000SMTNoOur Baseline
45NIIja-en2014/09/02 11:42:532720.0000000.0000000.0000000.5740300.0000000.0000000.0000000.0000000.0000000.000000SMTNoOur Baseline with Preordering
46TMUja-en2014/09/07 23:28:043000.0000000.0000000.0000000.5614500.0000000.0000000.0000000.0000000.0000000.000000SMTNoOur baseline system with preordering method
47TMUja-en2014/09/07 23:32:493010.0000000.0000000.0000000.5783600.0000000.0000000.0000000.0000000.0000000.000000SMTNoOur baseline system with another preordering method
48TMUja-en2014/09/09 19:14:423070.0000000.0000000.0000000.5805000.0000000.0000000.0000000.0000000.0000000.000000SMTNoOur baseline system
49NICTja-en2015/07/16 13:27:584880.0000000.0000000.0000000.5875300.0000000.0000000.0000000.0000000.0000000.000000SMTNoour baseline (DL=6) + dependency-based pre-reordering [Ding+ 2015]
50NICTja-en2015/07/17 08:51:454890.0000000.0000000.0000000.5629200.0000000.0000000.0000000.0000000.0000000.000000SMTNoour baseline: PB SMT in MOSES (DL=20) / SRILM / MeCab (IPA)
51NICTja-en2015/07/17 11:02:104920.0000000.0000000.0000000.5765100.0000000.0000000.0000000.0000000.0000000.000000SMTNoour baseline (DL=9) + reverse pre-reordering [Katz-Brown & Collins 2008]
52TOSHIBAja-en2015/07/23 15:00:125060.0000000.0000000.0000000.6047600.0000000.0000000.0000000.0000000.0000000.000000SMT and RBMTYesSystem combination SMT and RBMT(SPE) with RNNLM language model
53TOSHIBAja-en2015/07/28 16:44:275290.0000000.0000000.0000000.5978300.0000000.0000000.0000000.0000000.0000000.000000SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
54Senseja-en2015/07/28 22:23:435300.0000000.0000000.0000000.5646100.0000000.0000000.0000000.0000000.0000000.000000SMTNoBaseline-2015
55TMUja-en2015/08/04 16:32:205780.0000000.0000000.0000000.5909800.0000000.0000000.0000000.0000000.0000000.000000SMTNoOur PBSMT baseline (2015)
56NAISTja-en2015/08/14 17:46:436550.0000000.0000000.0000000.6094300.0000000.0000000.0000000.0000000.0000000.000000SMTNoTravatar System with NeuralMT Reranking and Parser Self Training
57Senseja-en2015/08/18 21:54:397020.0000000.0000000.0000000.5792100.0000000.0000000.0000000.0000000.0000000.000000SMTYesPassive JSTx1
58Senseja-en2015/08/18 21:58:087080.0000000.0000000.0000000.5815400.0000000.0000000.0000000.0000000.0000000.000000SMTYesPervasive JSTx1
59NAISTja-en2015/08/24 23:53:537570.0000000.0000000.0000000.6066000.0000000.0000000.0000000.0000000.0000000.000000SMTNoTravatar System with NeuralMT Reranking
60NAISTja-en2015/08/25 13:02:457660.0000000.0000000.0000000.5998000.0000000.0000000.0000000.0000000.0000000.000000SMTNoTravatar System with Parser Self Training
61NAISTja-en2015/08/25 13:03:487670.0000000.0000000.0000000.6000000.0000000.0000000.0000000.0000000.0000000.000000SMTNoTravatar System Baseline
62ORGANIZERja-en2015/08/25 18:57:257750.0000000.0000000.0000000.5622700.0000000.0000000.0000000.0000000.0000000.000000OtherYesOnline D (2015)
63Kyoto-Uja-en2015/08/27 14:40:327960.0000000.0000000.0000000.5964300.0000000.0000000.0000000.0000000.0000000.000000EBMTNoKyotoEBMT system without reranking
64Senseja-en2015/08/28 19:25:258220.0000000.0000000.0000000.5920400.0000000.0000000.0000000.0000000.0000000.000000SMTNoBaseline-2015 (train1 only)
65Senseja-en2015/08/29 04:32:368240.0000000.0000000.0000000.5792800.0000000.0000000.0000000.0000000.0000000.000000SMTNoBaseline-2015 (train123)
66Kyoto-Uja-en2015/08/30 13:02:188290.0000000.0000000.0000000.6032100.0000000.0000000.0000000.0000000.0000000.000000EBMTNoKyotoEBMT system with bilingual RNNLM reranking
67TMUja-en2015/09/01 05:46:508470.0000000.0000000.0000000.5704300.0000000.0000000.0000000.0000000.0000000.000000SMTNoPBSMT with dependency based phrase segmentation
68Senseja-en2015/09/01 17:42:288600.0000000.0000000.0000000.5797900.0000000.0000000.0000000.0000000.0000000.000000SMTYesPassive JSTx1
69Senseja-en2015/09/01 17:42:588610.0000000.0000000.0000000.5823700.0000000.0000000.0000000.0000000.0000000.000000SMTYesPervasive JSTx1
70ORGANIZERja-en2015/09/10 13:41:038770.0000000.0000000.0000000.5934100.0000000.0000000.0000000.0000000.0000000.000000SMTNoString-to-Tree SMT (2015)
71ORGANIZERja-en2015/09/10 14:38:138870.0000000.0000000.0000000.5516900.0000000.0000000.0000000.0000000.0000000.000000OtherYesRBMT D (2015)
72ORGANIZERja-en2015/09/11 10:54:338920.0000000.0000000.0000000.4533700.0000000.0000000.0000000.0000000.0000000.000000OtherYesOnline C (2015)
73ORGANIZERja-en2016/07/26 11:37:381042---0.564270---0.0000000.0000000.000000OtherYesOnline D (2016)
74NICT-2ja-en2016/08/05 17:50:251104---0.595930---0.0000000.0000000.000000SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
75NAISTja-en2016/08/09 16:14:051122---0.587450---0.0000000.0000000.000000SMTNoNeural MT w/ Lexicon and MinRisk Training 4 Ensemble
76bjtu_nlpja-en2016/08/17 19:51:241168---0.505730---0.0000000.0000000.000000NMTNoRNN Encoder-Decoder with attention mechanism, single model
77Kyoto-Uja-en2016/08/18 15:17:051182---0.558540---0.0000000.0000000.000000NMTNoEnsemble of 4 single-layer model (30k voc)
78Kyoto-Uja-en2016/08/19 01:31:011189---0.595240---0.0000000.0000000.000000EBMTNoKyotoEBMT 2016 w/o reranking
79TMUja-en2016/08/20 07:39:021222---0.565270---0.0000000.0000000.000000NMTNo2016 our proposed method to control output voice
80TMUja-en2016/08/20 14:31:481234---0.546880---0.0000000.0000000.000000NMTNo 6 ensemble
81Kyoto-Uja-en2016/08/20 15:07:471246---0.562650---0.0000000.0000000.000000NMTNovoc src:200k voc tgt: 52k + BPE 2-layer self-ensembling
82NAISTja-en2016/08/20 15:33:121247---0.571360---0.0000000.0000000.000000SMTNoNeural MT w/ Lexicon 6 Ensemble
83NAISTja-en2016/08/27 00:05:381275---0.594150---0.0000000.0000000.000000SMTNoNeural MT w/ Lexicon and MinRisk Training 6 Ensemble
84ORGANIZERja-en2016/11/16 10:29:511333---0.584390---0.0000000.0000000.000000NMTYesOnline D (2016/11/14)
85NICT-2ja-en2017/07/26 13:54:281476---0.574810---0.0000000.0000000.000000NMTNoNMT Single Model: BPE50k, Bi-LSTM(500*2) Encoder, LSTM(1000) Left-to-Right Decoder
86NICT-2ja-en2017/07/26 14:04:381480---0.578150---0.0000000.0000000.000000NMTNoNMT 6 Ensembles * Bi-directional Reranking
87NTTja-en2017/07/30 20:43:071616---0.597620---0.0000000.0000000.000000NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
88CUNIja-en2017/07/31 22:30:521665---0.583780---0.0000000.0000000.000000NMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding, 1M sentences
89NTTja-en2017/08/01 04:29:021681---0.597860---0.0000000.0000000.000000NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
90TMUja-en2017/08/01 11:10:491695---0.585710---0.0000000.0000000.000000NMTNoour baseline system in 2017
91TMUja-en2017/08/01 11:35:081703---0.595260---0.0000000.0000000.000000NMTNobaseline system with beam20
92TMUja-en2017/08/01 12:14:411712---0.588360---0.0000000.0000000.000000NMTNothe ensemble system of different dropout rate.
93Kyoto-Uja-en2017/08/01 13:42:251717---0.585540---0.0000000.0000000.000000NMTNoEnsemble of 4 BPE averaged parameters
94NTTja-en2017/08/01 14:50:511724---0.597470---0.0000000.0000000.000000NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking, add 1M pseudo training data (generated from provided training data)
95NTTja-en2017/08/01 15:53:151732---0.599920---0.0000000.0000000.000000NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking, add 1M pseudo training data (generated from training data)
96Kyoto-Uja-en2017/08/01 16:38:211733---0.591160---0.0000000.0000000.000000NMTNoEnsemble of 4 BPE, averaged Coverage penalty
97ORGANIZERja-en2017/08/02 01:03:081736---0.595580---0.0000000.0000000.000000NMTNoGoogle's "Attention Is All You Need"
98TMUja-en2017/08/04 11:16:361750---0.596360---0.0000000.0000000.000000NMTNobeam_size: 10, ensemble of different dropout rates.

Notice:

Back to top

HUMAN (WAT2022)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2021)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2020)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2019)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1NTTja-en2019/07/28 11:18:59322514.000SMTNoASPEC first 1.5M +last 1.5M (fwd), 6 ensemble
2KNU_Hyundaija-en2019/07/27 09:28:37317311.750NMTNoTransformer Base, relative position, BT, r2l reranking, ensemble of 3 models
3NICT-2ja-en2019/07/26 22:37:2230869.500NMTNoTransformer, ensemble of 4 models w/ long warm-up and self-training
4srcbja-en2019/07/27 15:27:0132056.500NMTNoTransformer (Big) with relative position, data augmentation, average checkpoints, Bayes re-ranking.

Notice:
Back to top

HUMAN (WAT2018)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1NICT-5ja-en2018/08/27 15:01:05217415.750NMTNoTransformer vanilla model using 3M sentences.
2NICT-5ja-en2018/09/10 14:55:37227311.500NMTNoMLNMT
3srcbja-en2018/09/16 14:51:4724745.750NMTNoTransformer with relative position, ensemble of 3 models.
4TMUja-en2018/09/16 12:04:362464-20.000NMTNoEnsemble of 6 Baseline-NMT
5Osaka-Uja-en2018/09/15 23:05:122440-37.000NMTYesrewarding model
6Osaka-Uja-en2018/09/16 13:11:482472-95.750SMTNopreordering with neural network

Notice:
Back to top

HUMAN (WAT2017)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1Kyoto-Uja-en2017/08/01 13:42:25171777.750NMTNoEnsemble of 4 BPE averaged parameters
2NTTja-en2017/08/01 04:29:02168177.250NMTNoEnsemble 8 Models: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
3ORGANIZERja-en2017/08/02 01:03:08173675.250NMTNoGoogle's "Attention Is All You Need"
4NTTja-en2017/07/30 20:43:07161675.000NMTNoSingle Model: joint BPE 16k, BiLSTM Encoder 512*2*2, LtoR LSTM Decoder 512*2, Beam Search 20 w/ length-based reranking
5Kyoto-Uja-en2017/08/01 16:38:21173374.500NMTNoEnsemble of 4 BPE, averaged Coverage penalty
6NICT-2ja-en2017/07/26 14:04:38148069.750NMTNoNMT 6 Ensembles * Bi-directional Reranking
7NICT-2ja-en2017/07/26 13:54:28147668.750NMTNoNMT Single Model: BPE50k, Bi-LSTM(500*2) Encoder, LSTM(1000) Left-to-Right Decoder
8CUNIja-en2017/07/31 22:30:52166566.000NMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding, 1M sentences
9TMUja-en2017/08/01 11:35:08170361.000NMTNobaseline system with beam20
10TMUja-en2017/08/01 11:10:49169556.750NMTNoour baseline system in 2017

Notice:
Back to top

HUMAN (WAT2016)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1ORGANIZERja-en2016/11/16 10:29:51133363.000NMTYesOnline D (2016/11/14)
2NAISTja-en2016/08/09 16:14:05112248.250SMTNoNeural MT w/ Lexicon and MinRisk Training 4 Ensemble
3NAISTja-en2016/08/20 15:33:12124747.500SMTNoNeural MT w/ Lexicon 6 Ensemble
4Kyoto-Uja-en2016/08/20 15:07:47124647.000NMTNovoc src:200k voc tgt: 52k + BPE 2-layer self-ensembling
5Kyoto-Uja-en2016/08/18 15:17:05118244.250NMTNoEnsemble of 4 single-layer model (30k voc)
6ORGANIZERja-en2016/07/26 11:37:38104228.000OtherYesOnline D (2016)
7TMUja-en2016/08/20 14:31:48123425.000NMTNo 6 ensemble
8bjtu_nlpja-en2016/08/17 19:51:24116819.250NMTNoRNN Encoder-Decoder with attention mechanism, single model
9TMUja-en2016/08/20 07:39:02122216.000NMTNo2016 our proposed method to control output voice
10NICT-2ja-en2016/08/05 17:50:251104UnderwaySMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM

Notice:
Back to top

HUMAN (WAT2015)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1NAISTja-en2015/08/14 17:46:4365535.500SMTNoTravatar System with NeuralMT Reranking and Parser Self Training
2Kyoto-Uja-en2015/08/30 13:02:1882932.500EBMTNoKyotoEBMT system with bilingual RNNLM reranking
3TOSHIBAja-en2015/07/28 16:44:2752925.000SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
4TOSHIBAja-en2015/07/23 15:00:1250621.250SMT and RBMTYesSystem combination SMT and RBMT(SPE) with RNNLM language model
5ORGANIZERja-en2015/09/10 14:38:1388716.750OtherYesRBMT D (2015)
6Kyoto-Uja-en2015/08/27 14:40:3279616.500EBMTNoKyotoEBMT system without reranking
7NICTja-en2015/07/16 13:27:5848816.000SMTNoour baseline (DL=6) + dependency-based pre-reordering [Ding+ 2015]
8NAISTja-en2015/08/25 13:02:4576611.750SMTNoTravatar System with Parser Self Training
9ORGANIZERja-en2015/09/10 13:41:038777.000SMTNoString-to-Tree SMT (2015)
10NICTja-en2015/07/17 11:02:104926.500SMTNoour baseline (DL=9) + reverse pre-reordering [Katz-Brown & Collins 2008]
11ORGANIZERja-en2015/08/25 18:57:257750.250OtherYesOnline D (2015)
12Senseja-en2015/09/01 17:42:28860-7.750SMTYesPassive JSTx1
13Senseja-en2015/09/01 17:42:58861-12.750SMTYesPervasive JSTx1
14TMUja-en2015/09/01 05:46:50847-25.500SMTNoPBSMT with dependency based phrase segmentation

Notice:
Back to top

HUMAN (WAT2014)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1NAISTja-en2014/07/19 01:04:484640.500SMTYesTravatar-based Forest-to-String SMT System with Extra Dictionaries
2NAISTja-en2014/07/31 11:40:5311937.500SMTNoTravatar-based Forest-to-String SMT System
3ORGANIZERja-en2014/07/11 19:59:55925.500SMTNoString-to-Tree SMT (2014)
4Kyoto-Uja-en2014/09/01 10:27:5426225.000EBMTNoOur new baseline system after several modifications + 20-best parses, KN7, RNNLM reranking
5TOSHIBAja-en2014/08/29 18:48:2424123.250SMT and RBMTYesRBMT with SPE(Statistical Post Editing) system
6ORGANIZERja-en2014/07/23 14:52:319623.000OtherYesRBMT D (2014)
7EIWAja-en2014/07/30 16:07:1411622.500SMT and RBMTYesCombination of RBMT and SPE(statistical post editing)
8Kyoto-Uja-en2014/08/31 23:36:5025621.250EBMTNoOur new baseline system after several modifications.
9TOSHIBAja-en2014/08/29 18:47:4424020.250RBMTYesRBMT system
10ORGANIZERja-en2014/07/18 11:08:133513.750OtherYesOnline D (2014)
11ORGANIZERja-en2014/07/11 19:45:3227.750SMTNoHierarchical Phrase-based SMT (2014)
12Senseja-en2014/08/23 05:34:031641.250SMTNoParaphrase max10
13NIIja-en2014/09/02 11:42:01271-5.750SMTNoOur Baseline
14NIIja-en2014/09/02 11:42:53272-14.250SMTNoOur Baseline with Preordering
15TMUja-en2014/09/07 23:32:49301-17.000SMTNoOur baseline system with another preordering method
16TMUja-en2014/09/07 23:28:04300-17.250SMTNoOur baseline system with preordering method

Notice:
Back to top

EVALUATION RESULTS USAGE POLICY

When you use the WAT evaluation results for any purpose such as:
- writing technical papers,
- making presentations about your system,
- advertising your MT system to the customers,
you can use the information about translation directions, scores (including both automatic and human evaluations) and ranks of your system among others. You can also use the scores of the other systems, but you MUST anonymize the other system's names. In addition, you can show the links (URLs) to the WAT evaluation result pages.

NICT (National Institute of Information and Communications Technology)
Kyoto University
Last Modified: 2018-08-02