# |
Team |
Task |
Date/Time |
DataID |
AMFM |
Method
|
Other Resources
|
System Description |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
|
1 | NLPHut | INDIC21en-or | 2021/03/19 16:29:30 | 4596 | - | - | - | - | - | - | 0.736638 | - | - | - | NMT | No | Transformer with target language tag trained using all languages PMI data. Then fine-tuned using all en-or data.
|
2 | ORGANIZER | INDIC21en-or | 2021/04/08 17:24:28 | 4800 | - | - | - | - | - | - | 0.714530 | - | - | - | NMT | No | Bilingual baseline trained on PMI data. Transformer base. LR=10-3 |
3 | NICT-5 | INDIC21en-or | 2021/04/21 15:44:24 | 5285 | - | - | - | - | - | - | 0.748319 | - | - | - | NMT | No | Pretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual. |
4 | SRPOL | INDIC21en-or | 2021/04/21 19:21:19 | 5321 | - | - | - | - | - | - | 0.723507 | - | - | - | SMT | No | Base transformer on all WAT21 data |
5 | NICT-5 | INDIC21en-or | 2021/04/22 11:53:17 | 5360 | - | - | - | - | - | - | 0.757804 | - | - | - | NMT | No | MBART+MNMT. Beam 4. |
6 | gaurvar | INDIC21en-or | 2021/04/25 20:00:38 | 5584 | - | - | - | - | - | - | 0.591864 | - | - | - | NMT | No | Multi Task Multi Lingual T5 trained for Multiple Indic Languages |
7 | sakura | INDIC21en-or | 2021/05/01 11:34:25 | 5888 | - | - | - | - | - | - | 0.767385 | - | - | - | NMT | No | Fine-tuning of multilingual mBART one2many model with training corpus.
|
8 | gaurvar | INDIC21en-or | 2021/05/01 19:32:30 | 5932 | - | - | - | - | - | - | 0.611704 | - | - | - | NMT | No | |
9 | mcairt | INDIC21en-or | 2021/05/03 17:20:41 | 5996 | - | - | - | - | - | - | 0.763064 | - | - | - | NMT | No | multilingual model(one to many model) trained on all WAT 2021 data by using base transformer. |
10 | IIIT-H | INDIC21en-or | 2021/05/03 18:10:23 | 6011 | - | - | - | - | - | - | 0.735718 | - | - | - | NMT | No | MNMT system (En-XX) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning. |
11 | CFILT | INDIC21en-or | 2021/05/04 01:05:15 | 6048 | - | - | - | - | - | - | 0.768399 | - | - | - | NMT | No | Multilingual(One-to-Many(En-XX)) NMT model based on Transformer with shared encoder and decoder. |
12 | coastal | INDIC21en-or | 2021/05/04 01:39:21 | 6084 | - | - | - | - | - | - | 0.758199 | - | - | - | NMT | No | seq2seq model trained on all WAT2021 data |
13 | sakura | INDIC21en-or | 2021/05/04 04:13:42 | 6157 | - | - | - | - | - | - | 0.769884 | - | - | - | NMT | No | Pre-training multilingual mBART one2many model with training corpus followed by finetuning on PMI Parallel.
|
14 | SRPOL | INDIC21en-or | 2021/05/04 15:21:35 | 6238 | - | - | - | - | - | - | 0.771831 | - | - | - | NMT | No | Ensemble of one-to-many on all data. Pretrained on BT, finetuned on PMI |
15 | SRPOL | INDIC21en-or | 2021/05/04 16:27:26 | 6264 | - | - | - | - | - | - | 0.771493 | - | - | - | NMT | No | One-to-many on all data. Pretrained on BT, finetuned on PMI |
16 | IITP-MT | INDIC21en-or | 2021/05/04 18:05:32 | 6293 | - | - | - | - | - | - | 0.737576 | - | - | - | NMT | No | One-to-Many model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus. |
17 | NICT-5 | INDIC21en-or | 2021/06/25 11:38:49 | 6489 | - | - | - | - | - | - | 0.000000 | - | - | - | NMT | No | Using PMI and PIB data for fine-tuning on a mbart model trained for over 5 epochs. MNMT model. |