NICT_LOGO.JPG KYOTO-U_LOGO.JPG

WAT

The Workshop on Asian Translation
Evaluation Results

[EVALUATION RESULTS TOP] | [BLEU] | [RIBES] | [AMFM] | [HUMAN (WAT2022)] | [HUMAN (WAT2021)] | [HUMAN (WAT2020)] | [HUMAN (WAT2019)] | [HUMAN (WAT2018)] | [HUMAN (WAT2017)] | [HUMAN (WAT2016)] | [HUMAN (WAT2015)] | [HUMAN (WAT2014)] | [EVALUATION RESULTS USAGE POLICY]

BLEU


# Team Task Date/Time DataID BLEU
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1NLPHutINDIC21kn-en2021/03/19 16:22:464593---17.72------NMTNoTransformer with source language and target language tags trained using all languages PMI data. Then fine-tuned using kn-en PMI data.
2ORGANIZERINDIC21kn-en2021/04/08 17:22:334795---20.33------NMTNoBilingual baseline trained on PMI data. Transformer base. LR=10-3
3NICT-5INDIC21kn-en2021/04/21 15:43:005280---29.29------NMTNoPretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual.
4SRPOLINDIC21kn-en2021/04/21 19:31:425328---30.67------NMTNoBase transformer on all WAT21 data
5NICT-5INDIC21kn-en2021/04/22 11:51:575355---30.87------NMTNoMBART+MNMT. Beam 4.
6gaurvarINDIC21kn-en2021/04/25 18:15:235537---12.98------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
7gaurvarINDIC21kn-en2021/04/25 18:32:335547---13.87------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
8gaurvarINDIC21kn-en2021/04/25 18:45:485558---13.45------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
9gaurvarINDIC21kn-en2021/04/25 18:59:055568---13.86------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
10sakuraINDIC21kn-en2021/04/30 22:45:495873---34.11------NMTNoFine-tuning of multilingual mBART many2many model with training corpus.
11IIIT-HINDIC21kn-en2021/05/03 18:13:306018---34.69------NMTNoMNMT system (XX-En) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning.
12CFILTINDIC21kn-en2021/05/04 01:13:126055---30.23------NMTNoMultilingual(Many-to-One(XX-En)) NMT model based on Transformer with shared encoder and decoder.
13coastalINDIC21kn-en2021/05/04 01:44:396101---21.60------NMTNoseq2seq model trained on all WAT2021 data
14CFILT-IITBINDIC21kn-en2021/05/04 01:55:246121---24.01------NMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all indic language data converted to same script
15CFILT-IITBINDIC21kn-en2021/05/04 02:00:496131---24.18------NMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all Dravidian languages data converted to same script
16coastalINDIC21kn-en2021/05/04 05:41:596165---31.04------NMTNomT5 trained only on PMI
17sakuraINDIC21kn-en2021/05/04 13:14:166205---35.46------NMTNoPre-training multilingual mBART many2many model with training corpus followed by finetuning on PMI Parallel.
18SRPOLINDIC21kn-en2021/05/04 15:26:086245---40.34------NMTNoEnsemble of many-to-one on all data. Pretrained on BT, finetuned on PMI
19SRPOLINDIC21kn-en2021/05/04 16:31:246271---39.01------NMTNoMany-to-one on all data. Pretrained on BT, finetuned on PMI
20IITP-MTINDIC21kn-en2021/05/04 17:53:286286---31.24------NMTNoMany-to-One model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus.
21mcairtINDIC21kn-en2021/05/04 20:02:546374---31.16------NMTNomultilingual model(many to one) trained on all WAT 2021 data by using base transformer.
22NICT-5INDIC21kn-en2021/06/21 14:32:566482---31.74------NMTNoUsing PMI and PIB data for fine-tuning on am mbart model trained for over 5 epochs.
23NICT-5INDIC21kn-en2021/06/25 11:48:366496---35.11------NMTNoUsing PMI and PIB data for fine-tuning on a mbart model trained for over 5 epochs. MNMT model.

Notice:

Back to top

RIBES


# Team Task Date/Time DataID RIBES
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1NLPHutINDIC21kn-en2021/03/19 16:22:464593---0.710551------NMTNoTransformer with source language and target language tags trained using all languages PMI data. Then fine-tuned using kn-en PMI data.
2ORGANIZERINDIC21kn-en2021/04/08 17:22:334795---0.717654------NMTNoBilingual baseline trained on PMI data. Transformer base. LR=10-3
3NICT-5INDIC21kn-en2021/04/21 15:43:005280---0.793521------NMTNoPretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual.
4SRPOLINDIC21kn-en2021/04/21 19:31:425328---0.798426------NMTNoBase transformer on all WAT21 data
5NICT-5INDIC21kn-en2021/04/22 11:51:575355---0.796119------NMTNoMBART+MNMT. Beam 4.
6gaurvarINDIC21kn-en2021/04/25 18:15:235537---0.629379------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
7gaurvarINDIC21kn-en2021/04/25 18:32:335547---0.648733------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
8gaurvarINDIC21kn-en2021/04/25 18:45:485558---0.683906------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
9gaurvarINDIC21kn-en2021/04/25 18:59:055568---0.674282------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
10sakuraINDIC21kn-en2021/04/30 22:45:495873---0.815837------NMTNoFine-tuning of multilingual mBART many2many model with training corpus.
11IIIT-HINDIC21kn-en2021/05/03 18:13:306018---0.804694------NMTNoMNMT system (XX-En) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning.
12CFILTINDIC21kn-en2021/05/04 01:13:126055---0.772913------NMTNoMultilingual(Many-to-One(XX-En)) NMT model based on Transformer with shared encoder and decoder.
13coastalINDIC21kn-en2021/05/04 01:44:396101---0.766410------NMTNoseq2seq model trained on all WAT2021 data
14CFILT-IITBINDIC21kn-en2021/05/04 01:55:246121---0.758489------NMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all indic language data converted to same script
15CFILT-IITBINDIC21kn-en2021/05/04 02:00:496131---0.759045------NMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all Dravidian languages data converted to same script
16coastalINDIC21kn-en2021/05/04 05:41:596165---0.811950------NMTNomT5 trained only on PMI
17sakuraINDIC21kn-en2021/05/04 13:14:166205---0.820898------NMTNoPre-training multilingual mBART many2many model with training corpus followed by finetuning on PMI Parallel.
18SRPOLINDIC21kn-en2021/05/04 15:26:086245---0.840458------NMTNoEnsemble of many-to-one on all data. Pretrained on BT, finetuned on PMI
19SRPOLINDIC21kn-en2021/05/04 16:31:246271---0.837287------NMTNoMany-to-one on all data. Pretrained on BT, finetuned on PMI
20IITP-MTINDIC21kn-en2021/05/04 17:53:286286---0.806170------NMTNoMany-to-One model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus.
21mcairtINDIC21kn-en2021/05/04 20:02:546374---0.803525------NMTNomultilingual model(many to one) trained on all WAT 2021 data by using base transformer.
22NICT-5INDIC21kn-en2021/06/21 14:32:566482---0.800615------NMTNoUsing PMI and PIB data for fine-tuning on am mbart model trained for over 5 epochs.
23NICT-5INDIC21kn-en2021/06/25 11:48:366496---0.811862------NMTNoUsing PMI and PIB data for fine-tuning on a mbart model trained for over 5 epochs. MNMT model.

Notice:

Back to top

AMFM


# Team Task Date/Time DataID AMFM
Method
Other
Resources
System
Description
unuse unuse unuse unuse unuse unuse unuse unuse unuse unuse
1NLPHutINDIC21kn-en2021/03/19 16:22:464593---0.679617------NMTNoTransformer with source language and target language tags trained using all languages PMI data. Then fine-tuned using kn-en PMI data.
2ORGANIZERINDIC21kn-en2021/04/08 17:22:334795---0.692019------NMTNoBilingual baseline trained on PMI data. Transformer base. LR=10-3
3NICT-5INDIC21kn-en2021/04/21 15:43:005280---0.782087------NMTNoPretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual.
4SRPOLINDIC21kn-en2021/04/21 19:31:425328---0.792687------NMTNoBase transformer on all WAT21 data
5NICT-5INDIC21kn-en2021/04/22 11:51:575355---0.792622------NMTNoMBART+MNMT. Beam 4.
6gaurvarINDIC21kn-en2021/04/25 18:15:235537---0.675607------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
7gaurvarINDIC21kn-en2021/04/25 18:32:335547---0.686757------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
8gaurvarINDIC21kn-en2021/04/25 18:45:485558---0.687726------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
9gaurvarINDIC21kn-en2021/04/25 18:59:055568---0.687810------NMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
10sakuraINDIC21kn-en2021/04/30 22:45:495873---0.805112------NMTNoFine-tuning of multilingual mBART many2many model with training corpus.
11IIIT-HINDIC21kn-en2021/05/03 18:13:306018---0.790977------NMTNoMNMT system (XX-En) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning.
12CFILTINDIC21kn-en2021/05/04 01:13:126055---0.778602------NMTNoMultilingual(Many-to-One(XX-En)) NMT model based on Transformer with shared encoder and decoder.
13coastalINDIC21kn-en2021/05/04 01:44:396101---0.773141------NMTNoseq2seq model trained on all WAT2021 data
14CFILT-IITBINDIC21kn-en2021/05/04 01:55:246121---0.751223------NMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all indic language data converted to same script
15CFILT-IITBINDIC21kn-en2021/05/04 02:00:496131---0.744802------NMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all Dravidian languages data converted to same script
16coastalINDIC21kn-en2021/05/04 05:41:596165---0.806951------NMTNomT5 trained only on PMI
17sakuraINDIC21kn-en2021/05/04 13:14:166205---0.809702------NMTNoPre-training multilingual mBART many2many model with training corpus followed by finetuning on PMI Parallel.
18SRPOLINDIC21kn-en2021/05/04 15:26:086245---0.823730------NMTNoEnsemble of many-to-one on all data. Pretrained on BT, finetuned on PMI
19SRPOLINDIC21kn-en2021/05/04 16:31:246271---0.820355------NMTNoMany-to-one on all data. Pretrained on BT, finetuned on PMI
20IITP-MTINDIC21kn-en2021/05/04 17:53:286286---0.798540------NMTNoMany-to-One model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus.
21mcairtINDIC21kn-en2021/05/04 20:02:546374---0.799216------NMTNomultilingual model(many to one) trained on all WAT 2021 data by using base transformer.
22NICT-5INDIC21kn-en2021/06/21 14:32:566482---0.000000------NMTNoUsing PMI and PIB data for fine-tuning on am mbart model trained for over 5 epochs.
23NICT-5INDIC21kn-en2021/06/25 11:48:366496---0.000000------NMTNoUsing PMI and PIB data for fine-tuning on a mbart model trained for over 5 epochs. MNMT model.

Notice:

Back to top

HUMAN (WAT2022)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2021)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1NLPHutINDIC21kn-en2021/03/19 16:22:464593UnderwayNMTNoTransformer with source language and target language tags trained using all languages PMI data. Then fine-tuned using kn-en PMI data.
2NICT-5INDIC21kn-en2021/04/21 15:43:005280UnderwayNMTNoPretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual.
3NICT-5INDIC21kn-en2021/04/22 11:51:575355UnderwayNMTNoMBART+MNMT. Beam 4.
4gaurvarINDIC21kn-en2021/04/25 18:45:485558UnderwayNMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
5gaurvarINDIC21kn-en2021/04/25 18:59:055568UnderwayNMTNoMulti Task Multi Lingual T5 trained for Multiple Indic Languages
6sakuraINDIC21kn-en2021/04/30 22:45:495873UnderwayNMTNoFine-tuning of multilingual mBART many2many model with training corpus.
7IIIT-HINDIC21kn-en2021/05/03 18:13:306018UnderwayNMTNoMNMT system (XX-En) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning.
8CFILTINDIC21kn-en2021/05/04 01:13:126055UnderwayNMTNoMultilingual(Many-to-One(XX-En)) NMT model based on Transformer with shared encoder and decoder.
9CFILT-IITBINDIC21kn-en2021/05/04 01:55:246121UnderwayNMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all indic language data converted to same script
10CFILT-IITBINDIC21kn-en2021/05/04 02:00:496131UnderwayNMTNoMultilingual NMT (Many to One): Transformer based model with shared encoder-decoder and shared BPE vocabulary trained using all Dravidian languages data converted to same script
11coastalINDIC21kn-en2021/05/04 05:41:596165UnderwayNMTNomT5 trained only on PMI
12SRPOLINDIC21kn-en2021/05/04 15:26:086245UnderwayNMTNoEnsemble of many-to-one on all data. Pretrained on BT, finetuned on PMI
13SRPOLINDIC21kn-en2021/05/04 16:31:246271UnderwayNMTNoMany-to-one on all data. Pretrained on BT, finetuned on PMI
14IITP-MTINDIC21kn-en2021/05/04 17:53:286286UnderwayNMTNoMany-to-One model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus.
15mcairtINDIC21kn-en2021/05/04 20:02:546374UnderwayNMTNomultilingual model(many to one) trained on all WAT 2021 data by using base transformer.

Notice:
Back to top

HUMAN (WAT2020)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2019)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2018)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2017)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2016)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2015)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2014)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

EVALUATION RESULTS USAGE POLICY

When you use the WAT evaluation results for any purpose such as:
- writing technical papers,
- making presentations about your system,
- advertising your MT system to the customers,
you can use the information about translation directions, scores (including both automatic and human evaluations) and ranks of your system among others. You can also use the scores of the other systems, but you MUST anonymize the other system's names. In addition, you can show the links (URLs) to the WAT evaluation result pages.

NICT (National Institute of Information and Communications Technology)
Kyoto University
Last Modified: 2018-08-02