NICT_LOGO.JPG KYOTO-U_LOGO.JPG

WAT

The Workshop on Asian Translation
Evaluation Results

[EVALUATION RESULTS TOP] | [BLEU] | [RIBES] | [AMFM] | [HUMAN (WAT2022)] | [HUMAN (WAT2021)] | [HUMAN (WAT2020)] | [HUMAN (WAT2019)] | [HUMAN (WAT2018)] | [HUMAN (WAT2017)] | [HUMAN (WAT2016)] | [HUMAN (WAT2015)] | [HUMAN (WAT2014)] | [EVALUATION RESULTS USAGE POLICY]

BLEU


# Team Task Date/Time DataID BLEU
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1ORGANIZERMMTen-ja2020/08/26 22:47:43357639.2348.9343.28-------NMTNoBaseline 1: text only NMT (Transformer)
2ORGANIZERMMTen-ja2020/08/26 22:49:09357738.3247.4542.02-------NMTNoBaseline 2: multimodal NMT (Transformer + ResNet50)
3ORGANIZERMMTen-ja2020/08/26 22:50:13357839.3148.9643.34-------NMTNoBaseline 5: multimodal NMT (Transformer + ResNet50 w/ visual attention and cross-lingual attention)
4ORGANIZERMMTen-ja2020/08/26 22:51:27357939.1748.7543.15-------NMTNoBaseline 4: multimodal NMT (Transformer + ResNet50 w/ cross-lingual attention)
5ORGANIZERMMTen-ja2020/08/26 22:52:22358039.6748.8943.62-------NMTNoBaseline 3: multimodal NMT (Transformer + ResNet50 w/ visual attention)
6TMUMMTen-ja2020/09/08 17:24:15365140.7149.8144.57-------NMTNoThe Ensemble of top6 models.
7TMUMMTen-ja2020/09/08 17:29:27365340.0249.3143.99-------NMTNoThe Ensemble of 3 baselines. Baseline: Multimodal NMT (BiGRU + ResNet50; decinit)
8TMUMMTen-ja2020/09/15 15:21:42374340.1649.2344.12-------NMTNoMultimodal NMT (BiGRU + ResNet50; decinit) pretrained on noised F30kEnt-JP training data, fine-tuned on clean data.
9HW-TSCMMTen-ja2020/09/18 17:08:15391441.2649.7944.76-------NMTYesmmt_cmask_pretrained_transformer_big
10TMUMMTen-ja2020/09/18 19:33:49396538.7748.0042.65-------NMTNoMultimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.
11TMUMMTen-ja2020/09/18 23:55:51402039.3248.5943.30-------NMTNoBaseline: Multimodal NMT (BiGRU + ResNet50; decinit)
12TMUMMTen-ja2020/09/19 11:54:51404639.9248.9443.78-------NMTNoThe Ensemble of 3 models. model: Multimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.
13TMEKUMMTen-ja2021/04/01 09:43:23473044.9553.5048.57-------NMTNoRNN-based MNMT model. Ensemble top 10 models.
14TMEKUMMTen-ja2021/04/23 22:24:24545243.4051.8147.02-------NMTNoRNN-based MNMT model. Single model.
15sakuraMMTen-ja2021/05/04 15:58:06625642.9250.7946.02-------NMTYesText-only mBART25 finetuning
16sakuraMMTen-ja2021/05/04 18:29:15631343.0951.1746.32-------NMTNoThe ensemble of two transformer-based MNMT models with universal visual representation

Notice:

Back to top

RIBES


# Team Task Date/Time DataID RIBES
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1ORGANIZERMMTen-ja2020/08/26 22:47:4335760.8616230.8696430.863487-------NMTNoBaseline 1: text only NMT (Transformer)
2ORGANIZERMMTen-ja2020/08/26 22:49:0935770.8548990.8620620.855312-------NMTNoBaseline 2: multimodal NMT (Transformer + ResNet50)
3ORGANIZERMMTen-ja2020/08/26 22:50:1335780.8636630.8705390.865254-------NMTNoBaseline 5: multimodal NMT (Transformer + ResNet50 w/ visual attention and cross-lingual attention)
4ORGANIZERMMTen-ja2020/08/26 22:51:2735790.8622880.8689480.863400-------NMTNoBaseline 4: multimodal NMT (Transformer + ResNet50 w/ cross-lingual attention)
5ORGANIZERMMTen-ja2020/08/26 22:52:2235800.8601800.8670070.861681-------NMTNoBaseline 3: multimodal NMT (Transformer + ResNet50 w/ visual attention)
6TMUMMTen-ja2020/09/08 17:24:1536510.8694330.8747420.869886-------NMTNoThe Ensemble of top6 models.
7TMUMMTen-ja2020/09/08 17:29:2736530.8680790.8731260.868404-------NMTNoThe Ensemble of 3 baselines. Baseline: Multimodal NMT (BiGRU + ResNet50; decinit)
8TMUMMTen-ja2020/09/15 15:21:4237430.8642090.8702550.864792-------NMTNoMultimodal NMT (BiGRU + ResNet50; decinit) pretrained on noised F30kEnt-JP training data, fine-tuned on clean data.
9HW-TSCMMTen-ja2020/09/18 17:08:1539140.8707920.8753620.870791-------NMTYesmmt_cmask_pretrained_transformer_big
10TMUMMTen-ja2020/09/18 19:33:4939650.8652300.8701270.865698-------NMTNoMultimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.
11TMUMMTen-ja2020/09/18 23:55:5140200.8642420.8687800.863866-------NMTNoBaseline: Multimodal NMT (BiGRU + ResNet50; decinit)
12TMUMMTen-ja2020/09/19 11:54:5140460.8713430.8762820.871542-------NMTNoThe Ensemble of 3 models. model: Multimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.
13TMEKUMMTen-ja2021/04/01 09:43:2347300.8860460.8905070.886316-------NMTNoRNN-based MNMT model. Ensemble top 10 models.
14TMEKUMMTen-ja2021/04/23 22:24:2454520.8743920.8803500.874700-------NMTNoRNN-based MNMT model. Single model.
15sakuraMMTen-ja2021/05/04 15:58:0662560.8832340.8859230.882120-------NMTYesText-only mBART25 finetuning
16sakuraMMTen-ja2021/05/04 18:29:1563130.8751100.8797990.875825-------NMTNoThe ensemble of two transformer-based MNMT models with universal visual representation

Notice:

Back to top

AMFM


# Team Task Date/Time DataID AMFM
Method
Other
Resources
System
Description
unuse unuse unuse unuse unuse unuse unuse unuse unuse unuse
1ORGANIZERMMTen-ja2020/08/26 22:47:4335760.6376080.6376080.637608-------NMTNoBaseline 1: text only NMT (Transformer)
2ORGANIZERMMTen-ja2020/08/26 22:49:0935770.6403810.6403810.640381-------NMTNoBaseline 2: multimodal NMT (Transformer + ResNet50)
3ORGANIZERMMTen-ja2020/08/26 22:50:1335780.6383110.6383110.638311-------NMTNoBaseline 5: multimodal NMT (Transformer + ResNet50 w/ visual attention and cross-lingual attention)
4ORGANIZERMMTen-ja2020/08/26 22:51:2735790.6391810.6391810.639181-------NMTNoBaseline 4: multimodal NMT (Transformer + ResNet50 w/ cross-lingual attention)
5ORGANIZERMMTen-ja2020/08/26 22:52:2235800.6421770.6421770.642177-------NMTNoBaseline 3: multimodal NMT (Transformer + ResNet50 w/ visual attention)
6TMUMMTen-ja2020/09/08 17:24:1536510.0000000.0000000.000000-------NMTNoThe Ensemble of top6 models.
7TMUMMTen-ja2020/09/08 17:29:2736530.0000000.0000000.000000-------NMTNoThe Ensemble of 3 baselines. Baseline: Multimodal NMT (BiGRU + ResNet50; decinit)
8TMUMMTen-ja2020/09/15 15:21:4237430.0000000.0000000.000000-------NMTNoMultimodal NMT (BiGRU + ResNet50; decinit) pretrained on noised F30kEnt-JP training data, fine-tuned on clean data.
9HW-TSCMMTen-ja2020/09/18 17:08:1539140.0000000.0000000.000000-------NMTYesmmt_cmask_pretrained_transformer_big
10TMUMMTen-ja2020/09/18 19:33:4939650.0000000.0000000.000000-------NMTNoMultimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.
11TMUMMTen-ja2020/09/18 23:55:5140200.0000000.0000000.000000-------NMTNoBaseline: Multimodal NMT (BiGRU + ResNet50; decinit)
12TMUMMTen-ja2020/09/19 11:54:5140460.0000000.0000000.000000-------NMTNoThe Ensemble of 3 models. model: Multimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.
13TMEKUMMTen-ja2021/04/01 09:43:2347300.6441240.6441240.644124-------NMTNoRNN-based MNMT model. Ensemble top 10 models.
14TMEKUMMTen-ja2021/04/23 22:24:2454520.6441130.6441130.644113-------NMTNoRNN-based MNMT model. Single model.
15sakuraMMTen-ja2021/05/04 15:58:0662560.6483690.6483690.648369-------NMTYesText-only mBART25 finetuning
16sakuraMMTen-ja2021/05/04 18:29:1563130.6445070.6445070.644507-------NMTNoThe ensemble of two transformer-based MNMT models with universal visual representation

Notice:

Back to top

HUMAN (WAT2022)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2021)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1TMEKUMMTen-ja2021/04/01 09:43:234730UnderwayNMTNoRNN-based MNMT model. Ensemble top 10 models.
2TMEKUMMTen-ja2021/04/23 22:24:245452UnderwayNMTNoRNN-based MNMT model. Single model.
3sakuraMMTen-ja2021/05/04 18:29:156313UnderwayNMTNoThe ensemble of two transformer-based MNMT models with universal visual representation

Notice:
Back to top

HUMAN (WAT2020)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1HW-TSCMMTen-ja2020/09/18 17:08:1539144.660NMTYesmmt_cmask_pretrained_transformer_big
2TMUMMTen-ja2020/09/08 17:24:1536514.383NMTNoThe Ensemble of top6 models.
3TMUMMTen-ja2020/09/19 11:54:5140464.330NMTNoThe Ensemble of 3 models. model: Multimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet.

Notice:
Back to top

HUMAN (WAT2019)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2018)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2017)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2016)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2015)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2014)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

EVALUATION RESULTS USAGE POLICY

When you use the WAT evaluation results for any purpose such as:
- writing technical papers,
- making presentations about your system,
- advertising your MT system to the customers,
you can use the information about translation directions, scores (including both automatic and human evaluations) and ranks of your system among others. You can also use the scores of the other systems, but you MUST anonymize the other system's names. In addition, you can show the links (URLs) to the WAT evaluation result pages.

NICT (National Institute of Information and Communications Technology)
Kyoto University
Last Modified: 2018-08-02