# |
Team |
Task |
Date/Time |
DataID |
AMFM |
Method
|
Other Resources
|
System Description |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
|
1 | ORGANIZER | MMTen-ja | 2020/08/26 22:47:43 | 3576 | 0.637608 | 0.637608 | 0.637608 | - | - | - | - | - | - | - | NMT | No | Baseline 1: text only NMT (Transformer) |
2 | ORGANIZER | MMTen-ja | 2020/08/26 22:49:09 | 3577 | 0.640381 | 0.640381 | 0.640381 | - | - | - | - | - | - | - | NMT | No | Baseline 2: multimodal NMT (Transformer + ResNet50) |
3 | ORGANIZER | MMTen-ja | 2020/08/26 22:50:13 | 3578 | 0.638311 | 0.638311 | 0.638311 | - | - | - | - | - | - | - | NMT | No | Baseline 5: multimodal NMT (Transformer + ResNet50 w/ visual attention and cross-lingual attention) |
4 | ORGANIZER | MMTen-ja | 2020/08/26 22:51:27 | 3579 | 0.639181 | 0.639181 | 0.639181 | - | - | - | - | - | - | - | NMT | No | Baseline 4: multimodal NMT (Transformer + ResNet50 w/ cross-lingual attention) |
5 | ORGANIZER | MMTen-ja | 2020/08/26 22:52:22 | 3580 | 0.642177 | 0.642177 | 0.642177 | - | - | - | - | - | - | - | NMT | No | Baseline 3: multimodal NMT (Transformer + ResNet50 w/ visual attention) |
6 | TMU | MMTen-ja | 2020/09/08 17:24:15 | 3651 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | No | The Ensemble of top6 models. |
7 | TMU | MMTen-ja | 2020/09/08 17:29:27 | 3653 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | No | The Ensemble of 3 baselines.
Baseline: Multimodal NMT (BiGRU + ResNet50; decinit) |
8 | TMU | MMTen-ja | 2020/09/15 15:21:42 | 3743 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | No | Multimodal NMT (BiGRU + ResNet50; decinit) pretrained on noised F30kEnt-JP training data, fine-tuned on clean data. |
9 | HW-TSC | MMTen-ja | 2020/09/18 17:08:15 | 3914 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | Yes | mmt_cmask_pretrained_transformer_big |
10 | TMU | MMTen-ja | 2020/09/18 19:33:49 | 3965 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | No | Multimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet. |
11 | TMU | MMTen-ja | 2020/09/18 23:55:51 | 4020 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | No | Baseline: Multimodal NMT (BiGRU + ResNet50; decinit) |
12 | TMU | MMTen-ja | 2020/09/19 11:54:51 | 4046 | 0.000000 | 0.000000 | 0.000000 | - | - | - | - | - | - | - | NMT | No | The Ensemble of 3 models. model: Multimodal NMT (BiGRU + ResNet50; double attention) w/ DropNet. |
13 | TMEKU | MMTen-ja | 2021/04/01 09:43:23 | 4730 | 0.644124 | 0.644124 | 0.644124 | - | - | - | - | - | - | - | NMT | No | RNN-based MNMT model. Ensemble top 10 models. |
14 | TMEKU | MMTen-ja | 2021/04/23 22:24:24 | 5452 | 0.644113 | 0.644113 | 0.644113 | - | - | - | - | - | - | - | NMT | No | RNN-based MNMT model. Single model. |
15 | sakura | MMTen-ja | 2021/05/04 15:58:06 | 6256 | 0.648369 | 0.648369 | 0.648369 | - | - | - | - | - | - | - | NMT | Yes | Text-only mBART25 finetuning |
16 | sakura | MMTen-ja | 2021/05/04 18:29:15 | 6313 | 0.644507 | 0.644507 | 0.644507 | - | - | - | - | - | - | - | NMT | No | The ensemble of two transformer-based MNMT models with universal visual representation |