# |
Team |
Task |
Date/Time |
DataID |
AMFM |
Method
|
Other Resources
|
System Description |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
|
1 | 683 | MMCHMMen-hi | 2019/08/08 19:13:36 | 3270 | - | - | - | - | - | - | 0.668260 | - | - | - | NMT | No | This system is using VGG19 model to extract features and translated by OpenNMT tool. |
2 | PUP-IND | MMCHMMen-hi | 2019/08/09 20:30:04 | 3280 | - | - | - | - | - | - | 0.632060 | - | - | - | NMT | Yes | NMT with image's global features as input and local feature used for attention. Uses pre-trained embedding for English and Hindi.
|
3 | PUP-IND | MMCHMMen-hi | 2019/08/09 21:55:04 | 3281 | - | - | - | - | - | - | 0.659840 | - | - | - | NMT | Yes | This system uses various NMT models and rerank the output of models to select best candidate. Re ranking uses, Eng-Hin Dictionary, and (tri/bi)-gram model to produce score. |
4 | NITSNLP | MMCHMMen-hi | 2019/08/10 21:49:02 | 3298 | - | - | - | - | - | - | 0.559990 | - | - | - | NMT | No | Using VGG19 with OpenNMT tool |