# |
Team |
Task |
Date/Time |
DataID |
AMFM |
Method
|
Other Resources
|
System Description |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
|
1 | NLPHut | INDIC21en-mr | 2021/03/19 16:25:01 | 4594 | - | - | - | - | - | - | 0.745915 | - | - | - | NMT | No | Transformer with target language tag trained using all languages PMI data. Then fine-tuned using en-mr PMI data. |
2 | ORGANIZER | INDIC21en-mr | 2021/04/08 17:23:52 | 4798 | - | - | - | - | - | - | 0.730656 | - | - | - | NMT | No | Bilingual baseline trained on PMI data. Transformer base. LR=10-3 |
3 | NICT-5 | INDIC21en-mr | 2021/04/21 15:43:54 | 5283 | - | - | - | - | - | - | 0.785952 | - | - | - | NMT | No | Pretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual. |
4 | SRPOL | INDIC21en-mr | 2021/04/21 19:20:47 | 5320 | - | - | - | - | - | - | 0.805010 | - | - | - | SMT | No | Base transformer on all WAT21 data |
5 | NICT-5 | INDIC21en-mr | 2021/04/22 11:52:46 | 5358 | - | - | - | - | - | - | 0.800357 | - | - | - | NMT | No | MBART+MNMT. Beam 4. |
6 | gaurvar | INDIC21en-mr | 2021/04/25 19:59:37 | 5583 | - | - | - | - | - | - | 0.654698 | - | - | - | NMT | No | Multi Task Multi Lingual T5 trained for Multiple Indic Languages |
7 | sakura | INDIC21en-mr | 2021/05/01 11:31:17 | 5887 | - | - | - | - | - | - | 0.790921 | - | - | - | NMT | No | Fine-tuning of multilingual mBART one2many model with training corpus.
|
8 | gaurvar | INDIC21en-mr | 2021/05/01 19:31:44 | 5931 | - | - | - | - | - | - | 0.658104 | - | - | - | NMT | No | Multi Task Multi Lingual T5 trained for Multiple Indic Languages |
9 | mcairt | INDIC21en-mr | 2021/05/03 17:35:08 | 5999 | - | - | - | - | - | - | 0.791850 | - | - | - | NMT | No | multilingual model(one to many model) trained on all WAT 2021 data by using base transformer. |
10 | IIIT-H | INDIC21en-mr | 2021/05/03 18:09:25 | 6010 | - | - | - | - | - | - | 0.807758 | - | - | - | NMT | No | MNMT system (En-XX) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning. |
11 | CFILT | INDIC21en-mr | 2021/05/04 01:03:12 | 6047 | - | - | - | - | - | - | 0.811499 | - | - | - | NMT | No | Multilingual(One-to-Many(En-XX)) NMT model based on Transformer with shared encoder and decoder. |
12 | coastal | INDIC21en-mr | 2021/05/04 01:38:51 | 6082 | - | - | - | - | - | - | 0.799538 | - | - | - | NMT | No | seq2seq model trained on all WAT2021 data |
13 | sakura | INDIC21en-mr | 2021/05/04 04:12:09 | 6156 | - | - | - | - | - | - | 0.803566 | - | - | - | NMT | No | Pre-training multilingual mBART one2many model with training corpus followed by finetuning on PMI Parallel.
|
14 | SRPOL | INDIC21en-mr | 2021/05/04 15:21:03 | 6237 | - | - | - | - | - | - | 0.809721 | - | - | - | NMT | No | Ensemble of one-to-many on all data. Pretrained on BT, finetuned on PMI |
15 | SRPOL | INDIC21en-mr | 2021/05/04 16:26:45 | 6263 | - | - | - | - | - | - | 0.810757 | - | - | - | NMT | No | One-to-many on all data. Pretrained on BT, finetuned on PMI |
16 | IITP-MT | INDIC21en-mr | 2021/05/04 18:00:23 | 6291 | - | - | - | - | - | - | 0.798673 | - | - | - | NMT | No | One-to-Many model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus. |
17 | NICT-5 | INDIC21en-mr | 2021/06/25 11:38:28 | 6488 | - | - | - | - | - | - | 0.000000 | - | - | - | NMT | No | Using PMI and PIB data for fine-tuning on a mbart model trained for over 5 epochs. MNMT model. |