NICT_LOGO.JPG KYOTO-U_LOGO.JPG

WAT

The Workshop on Asian Translation
Evaluation Results

[EVALUATION RESULTS TOP] | [BLEU] | [RIBES] | [AMFM] | [HUMAN (WAT2022)] | [HUMAN (WAT2021)] | [HUMAN (WAT2020)] | [HUMAN (WAT2019)] | [HUMAN (WAT2018)] | [HUMAN (WAT2017)] | [HUMAN (WAT2016)] | [HUMAN (WAT2015)] | [HUMAN (WAT2014)] | [EVALUATION RESULTS USAGE POLICY]

BLEU


# Team Task Date/Time DataID BLEU
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1ORGANIZERJPCja-en2016/11/16 11:06:501338---49.35--- 0.00 0.00 0.00NMTYesOnline A (2016/11/14)
2sakuraJPCja-en2024/08/08 19:55:467281---49.30------NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh) - Best
3sakuraJPCja-en2024/08/09 00:16:397293---49.30------NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh)
4JAPIOJPCja-en2017/07/28 22:22:151574---49.00--- 0.00 0.00 0.00NMTYesCombination of 3 NMT systems (OpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor)
5KNU_HyundaiJPCja-en2019/07/27 12:27:323189---48.71------NMTYesTransformer Base (+ASPEC data), relative position, BT, r2l reranking, checkpoint ensemble
6Bering LabJPCja-en2021/04/23 13:05:245419---48.44------NMTYesTransformer Ensemble with additional crawled parallel corpus
7JAPIOJPCja-en2017/07/29 10:49:011578---48.08--- 0.00 0.00 0.00NMTYesOpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor
8goku20JPCja-en2020/09/22 00:08:484108---47.34------NMTNomBART pre-training transformer, ensemble of 3 models
9sarahJPCja-en2019/07/26 11:18:482969---47.07------NMTNoTransformer, ensemble of 4 models
10goku20JPCja-en2020/09/21 12:15:474094---46.71------NMTNomBART pre-training transformer, single model
11tpt_watJPCja-en2021/04/27 02:32:275710---45.86------NMTNoBase Transformer model with separate vocab, size 8k
12ORGANIZERJPCja-en2018/08/15 18:38:511965---44.08---- 0.00 0.00NMTNoNMT with Attention
13JAPIOJPCja-en2017/07/25 18:17:301455---44.07--- 0.00 0.00 0.00NMTNoOpenNMT(dbrnn)
14bjtu_nlpJPCja-en2016/08/16 12:34:361149---41.62--- 0.00 0.00 0.00NMTNoRNN Encoder-Decoder with attention mechanism, single model
15CUNIJPCja-en2017/07/31 22:34:511666---38.29--- 0.00 0.00 0.00SMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding
16u-tkbJPCja-en2017/07/26 12:53:501472---37.31--- 0.00 0.00 0.00NMTNoNMT with SMT phrase translation (phrase extraction with branching entropy; attention over bidirectional LSTMs; by Harvard NMT)
17NICT-2JPCja-en2016/08/05 17:58:401103---36.06--- 0.00 0.00 0.00SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
18ORGANIZERJPCja-en2016/07/26 10:15:251035---35.77--- 0.00 0.00 0.00OtherYesOnline A (2016)
19NICT-2JPCja-en2016/08/04 17:26:271080---35.68--- 0.00 0.00 0.00SMTNoPhrase-based SMT with Preordering + Domain Adaptation
20ORGANIZERJPCja-en2016/07/13 17:12:09980---34.40--- 0.00 0.00 0.00SMTNoString-to-Tree SMT
21Kyoto-UJPCja-en2016/07/27 17:15:101057---33.85--- 0.00 0.00 0.00EBMTNoKyotoEBMT 2016 w/o reranking
22ORGANIZERJPCja-en2016/07/13 17:00:31979---32.23--- 0.00 0.00 0.00SMTNoHierarchical Phrase-based SMT
23ORGANIZERJPCja-en2016/07/13 16:54:09977---30.80--- 0.00 0.00 0.00SMTNoPhrase-based SMT
24ORGANIZERJPCja-en2016/08/05 15:18:461090---21.57--- 0.00 0.00 0.00OtherYesRBMT A (2016)
25ORGANIZERJPCja-en2016/08/05 14:51:271088---21.00--- 0.00 0.00 0.00OtherYesRBMT C (2016)
26ORGANIZERJPCja-en2016/08/05 15:59:141095---18.38--- 0.00 0.00 0.00OtherYesRBMT B (2016)
27ORGANIZERJPCja-en2016/07/26 13:43:211051---16.00--- 0.00 0.00 0.00OtherYesOnline B (2016)

Notice:

Back to top

RIBES


# Team Task Date/Time DataID RIBES
Method
Other
Resources
System
Description
juman kytea mecab moses-
tokenizer
stanford-
segmenter-
ctb
stanford-
segmenter-
pku
indic-
tokenizer
unuse myseg kmseg
1Bering LabJPCja-en2021/04/23 13:05:245419---0.879638------NMTYesTransformer Ensemble with additional crawled parallel corpus
2KNU_HyundaiJPCja-en2019/07/27 12:27:323189---0.879063------NMTYesTransformer Base (+ASPEC data), relative position, BT, r2l reranking, checkpoint ensemble
3ORGANIZERJPCja-en2016/11/16 11:06:501338---0.878342---0.0000000.0000000.000000NMTYesOnline A (2016/11/14)
4JAPIOJPCja-en2017/07/28 22:22:151574---0.878298---0.0000000.0000000.000000NMTYesCombination of 3 NMT systems (OpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor)
5sakuraJPCja-en2024/08/08 19:55:467281---0.877741------NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh) - Best
6sakuraJPCja-en2024/08/09 00:16:397293---0.877343------NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh)
7JAPIOJPCja-en2017/07/29 10:49:011578---0.873093---0.0000000.0000000.000000NMTYesOpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor
8goku20JPCja-en2020/09/22 00:08:484108---0.872474------NMTNomBART pre-training transformer, ensemble of 3 models
9sarahJPCja-en2019/07/26 11:18:482969---0.870997------NMTNoTransformer, ensemble of 4 models
10goku20JPCja-en2020/09/21 12:15:474094---0.869896------NMTNomBART pre-training transformer, single model
11tpt_watJPCja-en2021/04/27 02:32:275710---0.866360------NMTNoBase Transformer model with separate vocab, size 8k
12JAPIOJPCja-en2017/07/25 18:17:301455---0.863385---0.0000000.0000000.000000NMTNoOpenNMT(dbrnn)
13ORGANIZERJPCja-en2018/08/15 18:38:511965---0.859168----0.0000000.000000NMTNoNMT with Attention
14bjtu_nlpJPCja-en2016/08/16 12:34:361149---0.851975---0.0000000.0000000.000000NMTNoRNN Encoder-Decoder with attention mechanism, single model
15u-tkbJPCja-en2017/07/26 12:53:501472---0.841136---0.0000000.0000000.000000NMTNoNMT with SMT phrase translation (phrase extraction with branching entropy; attention over bidirectional LSTMs; by Harvard NMT)
16CUNIJPCja-en2017/07/31 22:34:511666---0.837425---0.0000000.0000000.000000SMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding
17NICT-2JPCja-en2016/08/05 17:58:401103---0.825420---0.0000000.0000000.000000SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
18NICT-2JPCja-en2016/08/04 17:26:271080---0.824398---0.0000000.0000000.000000SMTNoPhrase-based SMT with Preordering + Domain Adaptation
19ORGANIZERJPCja-en2016/07/26 10:15:251035---0.803661---0.0000000.0000000.000000OtherYesOnline A (2016)
20Kyoto-UJPCja-en2016/07/27 17:15:101057---0.800841---0.0000000.0000000.000000EBMTNoKyotoEBMT 2016 w/o reranking
21ORGANIZERJPCja-en2016/07/13 17:12:09980---0.793483---0.0000000.0000000.000000SMTNoString-to-Tree SMT
22ORGANIZERJPCja-en2016/07/13 17:00:31979---0.763030---0.0000000.0000000.000000SMTNoHierarchical Phrase-based SMT
23ORGANIZERJPCja-en2016/08/05 14:51:271088---0.755017---0.0000000.0000000.000000OtherYesRBMT C (2016)
24ORGANIZERJPCja-en2016/08/05 15:18:461090---0.750381---0.0000000.0000000.000000OtherYesRBMT A (2016)
25ORGANIZERJPCja-en2016/07/13 16:54:09977---0.730056---0.0000000.0000000.000000SMTNoPhrase-based SMT
26ORGANIZERJPCja-en2016/08/05 15:59:141095---0.710992---0.0000000.0000000.000000OtherYesRBMT B (2016)
27ORGANIZERJPCja-en2016/07/26 13:43:211051---0.688004---0.0000000.0000000.000000OtherYesOnline B (2016)

Notice:

Back to top

AMFM


# Team Task Date/Time DataID AMFM
Method
Other
Resources
System
Description
unuse unuse unuse unuse unuse unuse unuse unuse unuse unuse
1JAPIOJPCja-en2017/07/28 22:22:151574---0.724710---0.0000000.0000000.000000NMTYesCombination of 3 NMT systems (OpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor)
2ORGANIZERJPCja-en2016/11/16 11:06:501338---0.722590---0.0000000.0000000.000000NMTYesOnline A (2016/11/14)
3JAPIOJPCja-en2017/07/29 10:49:011578---0.715560---0.0000000.0000000.000000NMTYesOpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor
4JAPIOJPCja-en2017/07/25 18:17:301455---0.699930---0.0000000.0000000.000000NMTNoOpenNMT(dbrnn)
5ORGANIZERJPCja-en2018/08/15 18:38:511965---0.699460----0.0000000.000000NMTNoNMT with Attention
6u-tkbJPCja-en2017/07/26 12:53:501472---0.697290---0.0000000.0000000.000000NMTNoNMT with SMT phrase translation (phrase extraction with branching entropy; attention over bidirectional LSTMs; by Harvard NMT)
7bjtu_nlpJPCja-en2016/08/16 12:34:361149---0.690750---0.0000000.0000000.000000NMTNoRNN Encoder-Decoder with attention mechanism, single model
8CUNIJPCja-en2017/07/31 22:34:511666---0.681520---0.0000000.0000000.000000SMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding
9ORGANIZERJPCja-en2016/07/26 10:15:251035---0.673950---0.0000000.0000000.000000OtherYesOnline A (2016)
10NICT-2JPCja-en2016/08/05 17:58:401103---0.672890---0.0000000.0000000.000000SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
11ORGANIZERJPCja-en2016/07/13 17:12:09980---0.672760---0.0000000.0000000.000000SMTNoString-to-Tree SMT
12ORGANIZERJPCja-en2016/07/13 17:00:31979---0.672500---0.0000000.0000000.000000SMTNoHierarchical Phrase-based SMT
13Kyoto-UJPCja-en2016/07/27 17:15:101057---0.672040---0.0000000.0000000.000000EBMTNoKyotoEBMT 2016 w/o reranking
14NICT-2JPCja-en2016/08/04 17:26:271080---0.667540---0.0000000.0000000.000000SMTNoPhrase-based SMT with Preordering + Domain Adaptation
15ORGANIZERJPCja-en2016/07/13 16:54:09977---0.664830---0.0000000.0000000.000000SMTNoPhrase-based SMT
16Bering LabJPCja-en2021/04/23 13:05:245419---0.576681------NMTYesTransformer Ensemble with additional crawled parallel corpus
17tpt_watJPCja-en2021/04/27 02:32:275710---0.569295------NMTNoBase Transformer model with separate vocab, size 8k
18ORGANIZERJPCja-en2016/08/05 15:18:461090---0.521230---0.0000000.0000000.000000OtherYesRBMT A (2016)
19ORGANIZERJPCja-en2016/08/05 14:51:271088---0.519210---0.0000000.0000000.000000OtherYesRBMT C (2016)
20ORGANIZERJPCja-en2016/08/05 15:59:141095---0.518110---0.0000000.0000000.000000OtherYesRBMT B (2016)
21ORGANIZERJPCja-en2016/07/26 13:43:211051---0.486450---0.0000000.0000000.000000OtherYesOnline B (2016)
22sarahJPCja-en2019/07/26 11:18:482969---0.000000------NMTNoTransformer, ensemble of 4 models
23KNU_HyundaiJPCja-en2019/07/27 12:27:323189---0.000000------NMTYesTransformer Base (+ASPEC data), relative position, BT, r2l reranking, checkpoint ensemble
24goku20JPCja-en2020/09/21 12:15:474094---0.000000------NMTNomBART pre-training transformer, single model
25goku20JPCja-en2020/09/22 00:08:484108---0.000000------NMTNomBART pre-training transformer, ensemble of 3 models
26sakuraJPCja-en2024/08/08 19:55:467281---0.000000------NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh) - Best
27sakuraJPCja-en2024/08/09 00:16:397293---0.000000------NMTNoLLM: Rakuten/RakutenAI-7B-chat Fine-Tuned with JPC Corpus in six direction (En-Ja, Ja-En, Ko-Ja, Ja-Ko, Zh-Ja, Ja-Zh)

Notice:

Back to top

HUMAN (WAT2022)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2021)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2020)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2019)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1sarahJPCja-en2019/07/26 11:18:482969UnderwayNMTNoTransformer, ensemble of 4 models
2KNU_HyundaiJPCja-en2019/07/27 12:27:323189UnderwayNMTYesTransformer Base (+ASPEC data), relative position, BT, r2l reranking, checkpoint ensemble

Notice:
Back to top

HUMAN (WAT2018)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2017)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1JAPIOJPCja-en2017/07/28 22:22:15157468.500NMTYesCombination of 3 NMT systems (OpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor)
2JAPIOJPCja-en2017/07/29 10:49:01157867.000NMTYesOpenNMT(dbrnn) + JPC/Japio corpora + NMT/rule-based posteditor
3CUNIJPCja-en2017/07/31 22:34:51166658.000SMTNoBahdanau (2014) seq2seq with conditional GRU on byte-pair encoding
4u-tkbJPCja-en2017/07/26 12:53:50147251.500NMTNoNMT with SMT phrase translation (phrase extraction with branching entropy; attention over bidirectional LSTMs; by Harvard NMT)

Notice:
Back to top

HUMAN (WAT2016)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description
1ORGANIZERJPCja-en2016/11/16 11:06:50133871.500NMTYesOnline A (2016/11/14)
2bjtu_nlpJPCja-en2016/08/16 12:34:36114941.500NMTNoRNN Encoder-Decoder with attention mechanism, single model
3ORGANIZERJPCja-en2016/07/26 10:15:25103532.250OtherYesOnline A (2016)
4NICT-2JPCja-en2016/08/04 17:26:27108025.000SMTNoPhrase-based SMT with Preordering + Domain Adaptation
5NICT-2JPCja-en2016/08/05 17:58:40110324.250SMTYesPhrase-based SMT with Preordering + Domain Adaptation (JPC and ASPEC) + Google 5-gram LM
6ORGANIZERJPCja-en2016/08/05 15:18:46109023.750OtherYesRBMT A (2016)
7ORGANIZERJPCja-en2016/07/13 17:12:0998023.000SMTNoString-to-Tree SMT
8ORGANIZERJPCja-en2016/07/13 17:00:319798.750SMTNoHierarchical Phrase-based SMT

Notice:
Back to top

HUMAN (WAT2015)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

HUMAN (WAT2014)


# Team Task Date/Time DataID HUMAN
Method
Other
Resources
System
Description

Notice:
Back to top

EVALUATION RESULTS USAGE POLICY

When you use the WAT evaluation results for any purpose such as:
- writing technical papers,
- making presentations about your system,
- advertising your MT system to the customers,
you can use the information about translation directions, scores (including both automatic and human evaluations) and ranks of your system among others. You can also use the scores of the other systems, but you MUST anonymize the other system's names. In addition, you can show the links (URLs) to the WAT evaluation result pages.

NICT (National Institute of Information and Communications Technology)
Kyoto University
Last Modified: 2018-08-02