# |
Team |
Task |
Date/Time |
DataID |
AMFM |
Method
|
Other Resources
|
System Description |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
unuse |
|
1 | NLPHut | INDIC21en-kn | 2021/03/19 16:21:10 | 4591 | - | - | - | - | - | - | 0.762931 | - | - | - | NMT | No | Transformer with target language tag trained using all languages PMI data. Then fine-tuned using en-kn PMI data. |
2 | ORGANIZER | INDIC21en-kn | 2021/04/08 17:21:49 | 4794 | - | - | - | - | - | - | 0.741873 | - | - | - | NMT | No | Bilingual baseline trained on PMI data. Transformer base. LR=10-3 |
3 | NICT-5 | INDIC21en-kn | 2021/04/21 15:42:43 | 5279 | - | - | - | - | - | - | 0.798654 | - | - | - | NMT | No | Pretrain MBART on IndicCorp and FT on bilingual PMI data. Beam search. Model is bilingual. |
4 | SRPOL | INDIC21en-kn | 2021/04/21 19:19:32 | 5318 | - | - | - | - | - | - | 0.809064 | - | - | - | NMT | No | Base transformer on all WAT21 data |
5 | NICT-5 | INDIC21en-kn | 2021/04/22 11:51:45 | 5354 | - | - | - | - | - | - | 0.813658 | - | - | - | NMT | No | MBART+MNMT. Beam 4. |
6 | gaurvar | INDIC21en-kn | 2021/04/25 19:57:57 | 5581 | - | - | - | - | - | - | 0.658271 | - | - | - | NMT | No | Multi Task Multi Lingual T5 trained for Multiple Indic Languages |
7 | sakura | INDIC21en-kn | 2021/05/01 11:27:59 | 5885 | - | - | - | - | - | - | 0.801899 | - | - | - | NMT | No | Fine-tuning of multilingual mBART one2many model with training corpus.
|
8 | gaurvar | INDIC21en-kn | 2021/05/01 19:30:08 | 5929 | - | - | - | - | - | - | 0.657091 | - | - | - | NMT | No | Multi Task Multi Lingual T5 trained for Multiple Indic Languages |
9 | mcairt | INDIC21en-kn | 2021/05/03 17:30:11 | 5998 | - | - | - | - | - | - | 0.805963 | - | - | - | NMT | No | multilingual model(one to many model) trained on all WAT 2021 data by using base transformer. |
10 | IIIT-H | INDIC21en-kn | 2021/05/03 18:08:26 | 6008 | - | - | - | - | - | - | 0.812490 | - | - | - | NMT | No | MNMT system (En-XX) trained via exploiting lexical similarity on PMI+CVIT parallel corpus, then improved using back translation on PMI monolingual data followed by fine tuning. |
11 | CFILT | INDIC21en-kn | 2021/05/04 01:01:05 | 6044 | - | - | - | - | - | - | 0.816981 | - | - | - | NMT | No | Multilingual(One-to-Many(En-XX)) NMT model based on Transformer with shared encoder and decoder. |
12 | coastal | INDIC21en-kn | 2021/05/04 01:52:08 | 6113 | - | - | - | - | - | - | 0.809687 | - | - | - | NMT | No | seq2seq model trained on all WAT2021 data |
13 | sakura | INDIC21en-kn | 2021/05/04 04:09:09 | 6153 | - | - | - | - | - | - | 0.817831 | - | - | - | NMT | No | Pre-training multilingual mBART one2many model with training corpus followed by finetuning on PMI Parallel.
|
14 | SRPOL | INDIC21en-kn | 2021/05/04 15:19:56 | 6235 | - | - | - | - | - | - | 0.821941 | - | - | - | NMT | No | Ensemble of one-to-many on all data. Pretrained on BT, finetuned on PMI |
15 | SRPOL | INDIC21en-kn | 2021/05/04 16:25:49 | 6261 | - | - | - | - | - | - | 0.821329 | - | - | - | NMT | No | One-to-many on all data. Pretrained on BT, finetuned on PMI |
16 | IITP-MT | INDIC21en-kn | 2021/05/04 17:51:25 | 6285 | - | - | - | - | - | - | 0.791821 | - | - | - | NMT | No | One-to-Many model trained on all training data with base Transformer. All indic language data is romanized. Model fine-tuned on BT PMI monolingual corpus. |
17 | NICT-5 | INDIC21en-kn | 2021/06/25 11:37:49 | 6486 | - | - | - | - | - | - | 0.000000 | - | - | - | NMT | No | Using PMI and PIB data for fine-tuning on a mbart model trained for over 5 epochs. MNMT model. |