Integrating Empty Category Detection into Preordering Machine Translation

Shunsuke TAKENO[†], Masaaki NAGATA[‡], Kazuhide YAMAMOTO[†]

[†]Nagaoka University of Technology

[‡]NTT Communication Science Laboratory


```
Iso-i de iru nn desu .
急いでいるんです。('minahurry.)
```

```
Iso-I de iru nn desu .
急いでいるんです。('minahurry.)
```

are in a hurry .

```
THIS WORK
         Iso-I de iru nn desu .
   *pro* 急いでいるんです。('minahurry.)
O I'm in a hurry.
```


Empty categories(EC) are phonetically null but syntactically exists such as *dropped pronoun*(*pro*) and *trace* (*T*) of NP.

Previous work has built discriminative EC detection model as *classification problem* to each nodes using structural info.

Max-Entropy model for EC detection

$$P(e_1^n|T) = \prod_{i=1}^n P(e_i|e_1^{i-1}, T)$$
$$= \prod_{i=1}^n \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{\phi}(e_i, e_1^{i-1}, T))}{Z(e_1^{i-1}, T)}$$

Problems on the integration of PBSMT

GENERAL IDEA:

Problems on the integration of PBSMT

GENERAL IDEA:

Problems on the integration of PBSMT

GENERAL IDEA:

Simply insert detected empty categories as words

Little improvement on machine translation(BLEU: 33.1 \rightarrow 33.6)

Simply insert detected empty categories as words

Little improvement on machine translation(BLEU: 33.1 \rightarrow 33.6)

Why?

Simply insert detected empty categories as words

Little improvement on machine translation(BLEU: 33.1 \rightarrow 33.6)

Why?

- 1. Noisy empty category detection
- 2. Word order problem w.r.t empty categories

Suffering from imprecise prediction due to insufficient accuracy of parser

 Solution: Eliminating empty categories detected whose <u>confidence</u> is under the threshold(from dev).

Logistic regression model for EC detection

$$P(e_1^n|T) = \prod_{i=1}^n P(e_i|e_1^{i-1}, T)$$

$$= \prod_{i=1}^n \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{\phi}(e_i, e_1^{i-1}, T))}{Z(e_1^{i-1}, T)}$$

types	INPUT	P	R	F
pro	GOLDEN	74.3	75.6	74.9
T	GOLDEN	89.0	95.0	91.9
pro	SYSTEM	60.9	66.2	63.4
T	SYSTEM	50.0	42.2	45.8

Word order w/ EC in source sentence is different from the word order in target side

(pro)₁ (pro)₂ 家 に は 早く <u>帰る</u> ほう が <u>よい</u>。

It 's better if you come home early.

Word order w/ EC in source sentence is different from the word order in target side

(pro)₁ (pro)₂ 家 に は 早く <u>帰る</u> ほうが <u>よい</u> 。

It 's better if you come home early.

Word order w/ EC in source sentence is different from the word order in target side

Solution: Preordering model w/ EC

 $(pro)_1 (pro)_2$ 家には早く<u>帰る</u>ほうが<u>よい</u>。
It 's better if you come home early.

Word order w/ EC in source sentence is different from the word order in target side

Solution: **Preordering model w/ EC**

(Hoshino+2015) train discriminative model from word alignment

Swap the nodes so that maximize Kendall distance between sentences

 $(pro)_1(pro)_2$ 家には早く<u>帰る</u>ほうが<u>よい</u>。

It 's better if you come home early.

Word order w/ EC in source sentence is different from the word order in target side

Solution: Preordering model w/ EC

(Hoshino+2015) train discriminative model from word alignment

Swap the nodes so that maximize Kendall distance between sentences

Word order w/ EC in source sentence is different from the word order in target side

Solution: **Preordering model w/ EC**

(Hoshino+2015) train discriminative model from word alignment

Swap the nodes so that maximize Kendall distance between sentences

(pro)₁ よいが ほう (pro)₂<u>帰る</u>早くはに家。 It 's better if you come home early.

Word order w/ EC in source sentence is different from the word order in target side

Solution: Preordering model w/ EC

(Hoshino+2015) train discriminative model from word alignment

Swap the nodes so that maximize Kendall distance between sentences

Chicken and Egg problem:

Can we build preordering model from automatic word alignment?

REORDERING(C): Automatic word alignment w/ EC

or REORDERING(H): Manual word alignment w/o EC

(pro)₁ よいが ほう (pro)₂ <u>帰る</u>早くはに家。

It 's better if you come home early.

Experiment - settings

DATASETS:

- IWSLT 2005 JE Translation Task (19,980 sent.)
 - Small size but many empty categories (Spoken language corpus)
- The Kyoto Free Translation Task (KFTT) (440,000 sent.)
 - Medium size but fewer empty categories (Written language corpus)

METRICS: BLEU, RIBES

MODELS:

Evaluating each model w/ or w/o EC

- BASELINE:
 - Plain translation model (Moses)
- REODERING(C):
 - Built from automatic word alignments (i.e GIZA++)
 The word alignment include EC alignment (EC as known words)
- **REODERING(H)**: (∼ 5,319 sent. pairs)
 - Built from manual word alignments
 - The word alignment doesn't include EC alignment (EC as unknown words)

- Plain insertion(BASELINE) yields only slight improvement
- Preordering with EC detection yields much improvements

	BLEU		RIBES	
	w/o EC	w/ EC	w/o EC	w/ EC
BASELINE	33.1 +0	.5 33 .6 +1.2	74.2 + +2.1	1.5 75.7 +4.6
REORDERING(C)	33.2	34.3	76.3	78.8
REORDERING(H)	33.8	34.1	76.8	78.6

EC detection has little effect on KFTT

- Difficulty of EC detection in longer sentence(~ 24 words in src.)
- Frequently confusing person information(*pro* <-> it or he)

	BLEU		RIBES	
	w/o EC	w/ EC	w/o EC	w/ EC
BASELINE	18.5 +1.4	18.6	62.4 +0. +2.8	62.5
REORDERING(C)	19.3	19.8	64.8	65.2
REORDERING(H)	19.9	20.2	65.2	³ 65.5

- Propose the integration of EC detection into PBSMT
 - Preordering model alleviate the word order problem w/ EC
 - Plain insertion of EC slightly improve due to word order problem including ECs
 Word alignments about EC are needed for building the model
 - Elimination of unreliable ECs refines EC detection
 - Accuracy of structural parse is insufficient for practical usage
 - Cutting lower confidence of ECs alleviate the problem

Future works:

Recovering linguistic information of EC i.e. person, animacy or gender

- KFTT Evaluation (Written language)
- EC detection has little effect on KFTT
 - Difficulty of EC detection in longer sentence(~ 24 words in src.)
 - Frequently confusing person information(*pro* <-> it or he)

	BLEU		RIBES	
	w/o EC	w/ EC	w/o EC	w/ EC
BASELINE	18.5	18.6 (+0.1)	66.4	65.4 (-1.0)
REORDERING(C)	19.3	19.8(+0.5)	65.7	66.0 (+0.3)
REORDERING(H)	19.9	20.2 (+0.3)	66.2	66.3 (+0.1)

- IWSLT 2005 JE Task Evaluation (Spoken language)
- Plain insertion slightly improve the result.
- Combining preordering with EC detection yields much improvements.

	BLEU w/o EC w/ EC		RIBES	
			w/o EC	w/ EC
BASELINE	33.1	33.6 (+0.5)	74.2	75.7 (+1.5)
REORDERING(C)	33.2	34.3 (+1.1)	76.3	78.8 (+2.5)
REORDERING(H)	33.8	34.1 (+0.3)	76.8	78.6 (+1.8)

OVERVIEW

Success translation	
Reference	i 'm in a hurry .
Source(EC)	*pro* 急い で いる ん です 。
NO EC	are in a hurry.
ECs	i 'm in a hurry .
Reference	how much to rent it for three days?
Source	*pro* 三 日間 借りる と いくら に なり ます か 。
Reordered Source	*pro* いくら に ます なり と 借りる 三 日間 か 。
NO ECs	i have a three days and how much will it be?
ECs	i have a three days and how much will it be?
Pre-ordered w/o EC	what would you like to hire and three days.
Pre-ordered w/ EC	how much will it cost to three days?
Failed translation	
Reference	do you have any fruits or plants?
Source	*pro* 果物 や 植物 を 持っていますか。
Reordered Source	*pro* いて持っます果物や植物をか。
NO ECs	i have a carrying any plants and fruits?
ECs	i have fruit or plant?
Pre-ordered w/o EC	do you have some fruit or plants?
Pre-ordered w/ EC	i have a carrying any plants and fruits?

Problem2: inaccurate EC detection

· Reardering empty categories

Resources and Tools

- Shift-reduce Phrase structure parser: (Hayashi+2015)
- Tokenization: MeCab
- EC detection : (Takeno+2015)
- Lower casing

	BLEU		RIBES	
	w/o EC	w/ EC	w/o EC	w/ EC
BASELINE	33.1	33.6 (+0.5)	74.2	75.7 (+1.5)
REORDERING(C)	33.2	34.3 (+1.1)	76.3	78.8 (+2.5)
REORDERING(H)	33.8	34.1 (+0.3)	76.8	78.6 (+1.8)

- Plain insertion(BASELINE) improves both scores only slightly
- Combining preordering with EC detection show much improvement

- Reordering empty categories almost solve the word order problem.
- As practical problem of Empty Category Detection, We suffer from unstable prediction due to insufficient accuracy of parser.
- We need to eliminate empty categories detected whose <u>confidence</u> is under the *threshold*(from dev).

types	INPUT	P	R	F
pro	GOLDEN	74.3	75.6	74.9
T	GOLDEN	89.0	95.0	91.9
pro	SYSTEM	60.9	66.2	63.4
T	SYSTEM	50.0	42.2	45.8

$$P(e_1^n|T) = \prod_{i=1}^n P(e_i|e_1^{i-1}, T)$$

$$= \prod_{i=1}^n \frac{\exp(\boldsymbol{\theta} \cdot \boldsymbol{\phi}(e_i, e_1^{i-1}, T))}{Z(e_1^{i-1}, T)}$$

INTUNITIVE IDEA:

