# Weblio Pre-reordering SMT System

Zhongyuan Zhu (People call me <u>Raphael Shu</u>) @raphaelshu

Raphael

## **Overview of pre-reordering systems**

• Reorder input text before translation



# **Approaches of pre-reordering**

- Syntactic pre-reordering with parse trees
  - Rule-based
    - Head-finalization (Isozaki et al., 2010)
  - <u>Supervised learning with word alignments</u>
    - Automatically learning Rewrite Patterns (Xia and McCord, 2004)
- Syntactic pre-reordering without parse tree
  - LADER (Neubig et al., 2012)

Raphael

# Pre-reordering model in our system

# **Overview of our pre-reordering system**



#### Head-restructured CFG Parse Tree

- Problem of CFG parse tree
  - Hard to capture long-distance reordering patterns
- Problem of Dependency parse tree
  Fully lexicalized parse tree leads to a sparse reordering model

Raphael

### Head-restructured CFG Parse Tree

- Our approach
  - Restructure a CFG parse tree to inject head information into it



Raphael

# Learning reordering model based on LM

• Extract tag sequences in golden order



# Finding golden order with word alignments

 Given a bilingual sentence pair, source-side parse tree and word alignments,

the golden order of a node layer is defined as



For nodes  $(n_1, n_2, ..., n_k)$ 

Initial order:

$$o_0 = (1, 2, ..., k)$$

Golden order:

 $\hat{o} = (a_1, a_2, ..., a_k)$ 

Raphael

#### **Reordering a input parse tree**



2.Score them with language model

Raphael



All 12 possible combinations here

Selected *N*-best results by accumulated scores (Cube Pruning is applied in the practice)



# Experiments

### **In-house experiments**

|                                | BLEU  | RIBES  |
|--------------------------------|-------|--------|
| 1-best parse + 1 best reorder  | 34.46 | 0.7817 |
| N-best parse + 1 best reorder  | 34.80 | 0.7851 |
| 1-best parse + N-best reorder  | 34.90 | 0.7857 |
| N-best parse + N- best reorder | 35.10 | 0.7887 |

- For "N-best reorder", 10 candidate reordering results are considered.
- For "*N*-best parse", 30 candidate parse trees are considered.
- We select the final translation by the sum of translation score (given by decoder) and the score of pre-reordering.

Raphael

#### **N-best reordering & N-best parse tree inputs**

 Incorporating multiple reordering results and parse trees benefits automatic scores.



#### **Official evaluation results**

|                               | BLEU  | RIBES  | HUMAN  |
|-------------------------------|-------|--------|--------|
| N-best reorder                | 34.87 | 0.7869 | +43.25 |
| N-best reorder + N-best parse | 35.04 | 0.7900 | +36.00 |
| BASELINE PBMT                 | 29.80 | 0.6919 | 0.00   |

Raphael

#### **Official evaluation results**









# **Effect of pre-ordering**

Identical ordered sentences increases to 15%



### **Example of pre-reordering**

**Original input** 

the improvement of the life is a large problem of the practical application.



**Reordered input** 

Raphael

the life of the improvement va\_nsubjpass the practical application of a large problem is .

#### Reference

寿命 の 向上 が 実用 化 の 大きな 課題 で あ る 。

#### Review

- Language model is just a quick solution to the reordering problem, sometimes it fails in simple cases.
  - Sparseness problem
- To gain more from forest input, it's necessary to integrate it inside the pre-reordering model.

Raphael

## **Online demonstrations**



Head-restructured CFG parse treehttp://raphael.uaca.com/demos/hdtree



Pre-reordering http://raphael.uaca.com/demos/raphreorder

Raphael

# Thanks.